
OpenFlow Table Type
Patterns

Version No. 1.0
15 August 2014

NOTE: ONF specification
TS_OpenFlow_NDM_Synchronization_v.1.0_062014
is closely related to this specification.

cassandrablair
Typewritten Text

cassandrablair
Typewritten Text
ONF TS-017

OpenFlow Table Type Patterns Version 1.0

© Open Networking Foundation

ONF Document Type: OpenFlow Spec
ONF Document Name: OpenFlow Table Type Patterns v1.0

Disclaimer

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL,
SPECIFICATION OR SAMPLE.

Without limitation, ONF disclaims all liability, including liability for infringement of any
proprietary rights, relating to use of information in this specification and to the implementation
of this specification, and ONF disclaims all liability for cost of procurement of substitute goods
or services, lost profits, loss of use, loss of data or any incidental, consequential, direct, indirect,
or special damages, whether under contract, tort, warranty or otherwise, arising in any way out of
use or reliance upon this specification or any information herein.

No license, express or implied, by estoppel or otherwise, to any Open Networking Foundation or
Open Networking Foundation member intellectual property rights is granted herein.

Except that a license is hereby granted by ONF to copy and reproduce this specification for
internal use only.

Contact the Open Networking Foundation at https://www.opennetworking.org for information on
specification licensing through membership agreements.

Any marks and brands contained herein are the property of their respective owners.

WITHOUT LIMITING THE DISCLAIMER ABOVE, THIS SPECIFICATION OF THE
OPEN NETWORKING FOUNDATION (“ONF”) IS SUBJECT TO THE ROYALTY FREE,
REASONABLE AND NONDISCRIMINATORY (“RANDZ”) LICENSING COMMITMENTS
OF THE MEMBERS OF ONF PURSUANT TO THE ONF INTELLECTUAL PROPERTY
RIGHTS POLICY. ONF DOES NOT WARRANT THAT ALL NECESSARY CLAIMS
OF PATENT WHICH MAY BE IMPLICATED BY THE IMPLEMENTATION OF THIS
SPECIFICATION ARE OWNED OR LICENSABLE BY ONF'S MEMBERS AND
THEREFORE SUBJECT TO THE RANDZ COMMITMENT OF THE MEMBERS.

OpenFlow Table Type Patterns Version No. 1.0

Page 3 of 55 © 2014 Open Networking Foundation

1 Introduction ... 6

2 Table Type Patterns .. 6

2.1 Future-proofing the TTP Framework .. 7

2.2 The Basic Lifecycle of TTPs in an OpenFlow Network ... 7

2.2.1 Step 1: Something Prompts a New TTP ... 8

2.2.2 Step 2: Describing a TTP .. 8

2.2.3 Step 3: Sharing a TTP Description .. 9

2.2.4 Step 4: Adding support for a TTP: The compilation phase .. 10

2.2.5 Step 5: Going to Market with a TTP .. 10

2.2.6 Step 6: Picking a TTP at Connection Time ... 11

2.2.7 Step 7: Run-time Messaging with TTPs .. 11

2.2.8 Step 8: TTP-based Testing and Certification .. 12

3 Creating a Table Type Pattern ... 12

3.1 TTP Metadata... 15

3.2 Identifiers .. 17

3.3 Required Protocol Features ... 18

3.4 Table Map .. 19

3.5 Meter Table .. 20

3.6 Flow Tables .. 21

3.6.1 flow_mod Types .. 22

3.6.2 Built-in flow_mods ... 27

3.6.3 Table Subsets ... 28

3.7 Group Table Entries ... 28

3.8 PACKET_OUT support .. 29

3.9 TTP Parameters ... 30

3.10 Flow Paths ... 30

3.11 Security .. 32

Appendix A Benefits of TTPs and the TTP Lifecycle .. 34

A.1 Improving and Clarifying Interoperability .. 34

A.1.1 An Interoperability Thought Experiment ... 35

A.2 Simplifying implementation of multi-table OpenFlow .. 35

A.3 Improving switch resource utilization .. 36

A.4 Reducing the "Chicken-and-Egg" OpenFlow adoption challenge ... 36

A.5 In Summary .. 37

Appendix B TTP Implementation Considerations... 38

B.1 Introduction .. 38

B.2 Support for TABLE_FEATURES message ... 38

B.3 Support for FLOW_MOD messages ... 38

B.4 Support for GROUP_MOD messages .. 39

B.5 Potentially useful OF-Switch extensions for TTPs .. 40

OpenFlow Table Type Patterns Version No. 1.0

Page 4 of 55 © 2014 Open Networking Foundation

Appendix C Example TTP Description: L2-L3-ACLs .. 41

Appendix D Credits .. 55

List of Figures

Figure 1: OpenFlow Network Lifecycle with TTPs .. 8

Figure 2: L2-L3-ACLs TTP Diagram ... 41

List of Tables

Table 1: TTP member keywords .. 14

Table 2: General member keywords .. 14

Table 3: Support meta-member keywords ... 15

Table 4: Use meta-member keywords ... 15

Table 5: Metadata member keywords .. 16

Table 6: Variable element member keywords .. 17

Table 7: Extension identifier element member keywords ... 18

Table 8: Extension identifier element member keywords ... 18

Table 9: Meter table member keywords ... 20

Table 10: Meter type element member keywords .. 20

Table 11: Meter type bands element member keywords .. 21

Table 12: Built-in meter element member keywords .. 21

Table 13: Built-in meter band element member keywords ... 21

Table 14: Flow table element member keywords ... 22

Table 15: Flow_mod type member keywords ... 23

Table 16: Match set element member keywords .. 24

Table 17: Instruction set element member keywords ... 25

Table 18: Action object member keywords .. 26

Table 19: Table subsets member keywords ... 28

Table 20: Group table entry member keywords ... 29

Table 21: Bucket type object member keywords .. 29

OpenFlow Table Type Patterns Version No. 1.0

Page 5 of 55 © 2014 Open Networking Foundation

Table 22: Parameter element member keywords ... 30

Table 23: Flow path element member keywords .. 31

Table 24: Security member keywords .. 32

OpenFlow Table Type Patterns Version No. 1.0

Page 6 of 55 © 2014 Open Networking Foundation

1 Introduction

This document describes Table Type Patterns (TTPs) that support the lifecycle of development, deployment and

operation of OpenFlow networks. The development of a TTP-based approach has been motivated by several factors

including: to better accommodate heterogeneity of existing hardware switches, to enable future innovation in

hardware switches, to enable precise communication between app/controller developers and switch vendors, and to

enable automated communication between apps/controllers and switches. For a more in depth discussion of these

and other motivations see Appendix A.

This document is an ONF Technical Specification and has normative content, primarily in section 3. The normative

content includes the keywords defined for identifying attributes of the OpenFlow-Switch protocol and the structure of

the information in a Table Type Pattern.

2 Table Type Patterns

A Table Type Pattern (TTP) is an abstract switch model that describes specific switch forwarding behaviors that an

OpenFlow controller can program via the OpenFlow-Switch protocol. A TTP represents the flow processing

capabilities of an OpenFlow Logical Switch (OFLS). In declaring support for a particular TTP an OFLS indicates

support for all the required capabilities specified by the TTP, and a negotiated subset of optional capabilities. In

accepting a TTP a controller understands the valid commands for the OFLS are a constrained subset of the standard

OpenFlow-switch protocol – that is, the OFLS is not required to accept commands that do not conform to the

constraints specified by the TTP. An OpenFlow Capable Switch may support a number of TTPs, and a controller may

understand a number of TTPs, but only one TTP can be active for a given OFLS.

The TTP framework is an optional enhancement to the OpenFlow framework. The use of TTPs is optional because

there will be situations where they will not be needed. For example, when the forwarding model can be implemented

in a single flow table, or when the forwarding device faithfully implements all aspects of the implicit OpenFlow

abstract switch, then TTPs may not be needed. By abstract switch model, we mean that each table in a TTP does not

necessarily have a one-to-one mapping with a hardware table; mapping a TTP onto hardware is the responsibility of

the switch implementer.

When using the TTP framework, the controller and the switch agree on a specific TTP before the controller begins

sending OpenFlow messages to the switch. This agreement may be implicit (i.e., each side is configured a priori) or

negotiated before forwarding is enabled. The TTP framework can simplify the job of implementing an OpenFlow

controller or OpenFlow agent for a switch. The TTP provides a description of the required switch behavior so that

implementers can perform optimizations or deliver more complex forwarding behaviors (beyond what can be

represented in a single OpenFlow table). TTPs are expected to be most useful in situations where multiple flow tables

are needed, particularly when the forwarding devices are ASIC based. In the absence of TTPs, those use cases (and

others) may face significant interoperability challenges. In such cases, table properties are typically manipulated out-

of-band or device-specific coding is needed in the controller.

A TTP specifies a set of flow tables and describes the valid flow table entries and group table entries for an OFLS. As

the OpenFlow-Switch 1.x specification evolves and incorporates new objects, the TTP syntax must be updated to

support them. Some future changes to OpenFlow may be dramatic, requiring switch models beyond TTPs. Where

appropriate, allowance has been made for such future models.

OpenFlow Table Type Patterns Version No. 1.0

Page 7 of 55 © 2014 Open Networking Foundation

2.1 Future-proofing the TTP Framework

The structure of switch models, such as TTPs, may evolve significantly as the OpenFlow protocol (and its implicit

switch model) evolves to future generations. TTPs, which are the focus of this document, are based on the OpenFlow-

Switch 1.x protocol. We can anticipate that future generations of switch models will go beyond the table-centric

approach of OF-Switch 1.x. Such future models will likely be named something other than TTP. To refer to TTPs

together with their future cousins, we use the term “Negotiable Datapath Models” (NDMs) as a category term. That is,

TTPs are the first (and as yet, the only) type of NDM that has been described. The term “NDM” appears elsewhere in

this document where a particular effort has been made to future-proof of the TTP framework. For example, files that

represent TTPs include an “NDM_metadata” field which is intended to make it simpler for future tools to distinguish

different generations of models.

2.2 The Basic Lifecycle of TTPs in an OpenFlow Network

The OpenFlow protocol specifications (OpenFlow-Switch, OpenFlow-Config) are necessarily focused on the bits and

bytes and detailed behaviors related to elements of these protocols. These specifications do not provide a

comprehensive explanation of the framework within which these protocols are employed, i.e., the natural lifecycle of

OpenFlow network design, deployment and operation.

Like any other network, a Software Defined Network (SDN) must implement a consistent set of behaviors across a set

of distributed elements. Network clients must send and receive information using an encapsulation or encoding

required by the network. Each network element must understand this encoding to know how to process/forward

packets of information. Therefore the first step in the OpenFlow Network lifecycle is determining what network

encapsulation/encoding will be used (e.g., ODU frames, Ethernet MAC frames, IP packets, etc.) and how each device

will make use of it. In short, the first step in an OF network lifecycle is to define the network architecture in detail.

Table Type Patterns are a vehicle for fully describing switch behaviors based on the OpenFlow multi-table switch

model. To get a feel for TTPs are and how they are used, it’s useful to walk through a lifecycle diagram. The Lifecycle

shown in Figure 1 and some variations are described more fully in the sections below. Note that many of the steps in

the Lifecycle are not new, but existed in much the same form before the introduction of TTPs.

OpenFlow Table Type Patterns Version No. 1.0

Page 8 of 55 © 2014 Open Networking Foundation

Figure 1: OpenFlow Network Lifecycle with TTPs

2.2.1 Step 1: Something Prompts a New TTP

Any interested party is able to define a new TTP. The idea for a new TTP can be motivated by a wide variety of

circumstances. This step is comparable to the point in “traditional” OpenFlow development where an architect

conceives of a new application. It is in the interest of the architect to construct a TTP that is both suitable to the

application and supportable on available platforms. Where there is uncertainty on these points, partnerships between

application providers and equipment providers may be helpful.

The network architecture identifies the types of network elements (“logical switches” in OpenFlow terms) required to

implement the network. See step 1 in the lifecycle in Figure 1. In this example three network element types (shown as

different shapes) are identified in the network architecture. For each element type to be controlled using OpenFlow a

description of the controllable behaviors, a TTP, can be created (see step 2).

App providers (vendors or network operators) can conceive of various switch-level behaviors (as seen from outside

the box) that they would like to use for solution architectures that they develop. Switch vendors (either ASIC-based or

NPU-based) may choose to create a new TTP as a way to provide access to differentiated functionality in their

platform.

To get things started, the ONF will define a small number of TTPs that it believes will be useful and informative.

2.2.2 Step 2: Describing a TTP

The format of a TTP is described in detail in section 3. A TTP is a first generation detailed abstract switch model built

on an existing OpenFlow protocol version (e.g., OpenFlow-Switch 1.x). We describe a TTP as proper subset of an

OpenFlow multi-table logical switch. That is, a TTP describes a constrained subset of the OpenFlow logical switch

described in the OpenFlow specifications [https://www.opennetworking.org/sdn-resources/onf-

specifications/openflow]. The details of TTP Description are covered in Section 3, but we’ll provide a summary here.

Something drives need for new switch model

Drills down on
specific element

behaviors
Describe switch behavior as precise subset

of OF1.x model. Includes unique TTP
identifier and version #.

Share the TTP description
with both sides (publicly, or

under NDA)

App provider and switch vendor
independently add support for TTP in
their products. Machine built switch
plug-ins are a key goal.

Test labs will certify
popular open TTPs

New

New

App/ctrlr and switch go
live! (flowmods, etc)

App/ctrlr and switch check if TTPs
supported, and if so they negotiate
ID and parameters

New

ONF WG sees a
common use case

App provider has full
solution idea

Switch vendor shows
key capabilities

2 3

64 5 7 8

Buyer considers product
options (TTPs!), buys a

solution and installs

New

Describe the model as a TTP Share the TTP Description

Build support for TTP Go to Market Connect & Pick TTP Same run-time msgs

Same TTP?

TTP-based testing

TTP

1

https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow

OpenFlow Table Type Patterns Version No. 1.0

Page 9 of 55 © 2014 Open Networking Foundation

TTP Descriptions include metadata such as the naming authority, the NDM type (which for this document is always a

kind of TTP), name and version. A TTP description also includes a set of flow tables, the flow_mod message types that

must be supported in specific flow tables, and the group entries required in the group table. The TTP defines valid

flow_mod and group_mod messages for a given logical switch, and so effectively specifies the “table graph” of the

TTP.

TTP Descriptions may in future support the inclusion of test information in order to help drive interoperability, and

inclusion of such test information is recommended as a best practice. Interoperability is a key goal of TTPs, and tests

are important to confirm interoperability. Every TTP implementation will need testing and every TTP definition

would benefit from including suitable test information. By including test information, consistent support for TTPs is

more straightforward. Providers that offer TTP support can self-test and confirm that their implementation is

conformant.

Note: In this first phase of TTP support, TTPs are independent switch models. TTP developers can copy/paste

elements of other TTPs, but the current framework does not provide explicit support for importing or combining TTP

elements. These ideas are interesting and may be considered as TTPs mature.

2.2.3 Step 3: Sharing a TTP Description

As previously mentioned, the purpose of a TTP is to allow both ends of the OpenFlow control channel to support a

shared switch behavioral model. Clearly, the providers of these products (controller and switch) will both require

access to the TTP description. There are several scenarios:

1) ONF-developed TTPs

a. Once stable, these will be fully public, like OpenFlow specs.

i. Sharing will be accomplished by posting at the ONF website

ii. Note that TTPs are not intended to be “standards.” Instead, TTPs are “common practices”,

and ONF-developed TTPs will not hold any special distinction with respect to TTPs

developed by others.

2) ONF Member-developed open TTPs

a. Application, controller and switch providers who are ONF members can develop a TTP and share it.

i. Partnerships of members can also co-develop and share TTPs.

ii. Sharing of member TTPs will be supported on the ONF website, but can be accomplished

in other ways as well.

3) ONF Member-developed private TTPs

a. Market participants can also develop TTPs and keep them “under wraps”, either temporarily during

development or for more extended periods. This might be handled in two different ways:

i. Fully hidden TTPs: the IDs, descriptions and the supporting products are hidden.

1. The ability of providers to keep TTPs private may be useful during the

development phase of a TTP. The alternative would be that vendors would need

to share information during their development phase, which might impede

adoption of TTPs.

ii. Partially hidden TTPs: TTPs with Open IDs, but hidden descriptions, where partners can

advertise support for the semi-secret TTP. This may be helpful for vendors or users that

regard the contents of TTPs as being “trade secrets”. Since only implementers really need

to see the descriptions, it seems conceivable that descriptions could remain secret for

extended periods

b. Private TTPs may, at the discretion of the controlling parties, be made open over time.

OpenFlow Table Type Patterns Version No. 1.0

Page 10 of 55 © 2014 Open Networking Foundation

Sharing TTPs openly will help advance interoperability, and will help market participants in determining what

products interoperate. This will be true from the beginning and will become more compelling as TTP-based

conformance testing gains traction. (Note: TTPs may be useful as “test profiles” even for products that do not

explicitly support TTPs. More on this in section 2.1.9.)

2.2.4 Step 4: Adding support for a TTP: The compilation phase

In this step, the information in a TTP Description is used to build support for the abstract switch behavior that the

TTP represents. TTP Descriptions have been made both human and machine readable so that support can be

provided either by human developers or through machine compilation. (Machine compilation will be limited to

switch-based TTP support until well-defined Northbound API’s allow for machine-built controller support.) Machine-

based compilation of TTPs into switch-based plug-ins is quite feasible, and will eliminate the delays implicit in human

plug-in development. However, such compilation will require the development of compilers and device operating

systems that support the machine-built plug-ins. Meanwhile, the initial scenario is that, controller and switch

implementers (human developers) use the TTP description to code (and test) support for the TTP-defined switch

model, so that the devices interoperate properly when connected at run time. The timing of this development effort

may vary significantly depending on the scenario:

1) Third party TTPs (including ONF-developed TTPs) may be supported by both controller and switch in

similar timeframe

2) For TTPs provided by switch vendors and supported by their products, support can be added later by

controller developers wishing to support these products in OpenFlow network applications

3) When hardware suppliers are adding support for a TTP, there are two scenarios:

a. They may need to release on a typical hardware schedule, or

b. They may be able to decouple TTP support from their main OS release, and offer shorter timescales

for supporting new TTPs.

TTP descriptions are designed to be human readable so implementers can easily understand what is required of the

implementation to support the TTP.

In addition to supporting readability for implementers, there is also the potential for machine processing support.

For example, TTP compilation to produce software artifacts supporting use of the TTP is conceivable; however, TTP

compilation is matter for future investigation. TTP-oriented tools will simplify TTP use and adoption. Some work on

tools has begun, and the ONF will encourage further development. Detailed discussion of tools is, however, beyond

the scope of this document.

While the TTP description syntax is machine readable (JSON) it is recognized that this syntax may need enhancement

to support such goals. Additional protocol mechanisms will also be needed to support exchanges of either TTP

descriptions or compiled versions thereof.

2.2.5 Step 5: Going to Market with a TTP

The go-to-market step exists in the absence of TTPs, but a TTP will change the picture in important ways. First,

consider the diversity of OpenFlow-enabled devices as well as the range of optional features described in the

OpenFlow specifications. In such a context, it is difficult to know which switches fully support a given controller or

application. Explicitly declaring support for an applicable TTP gives customers confidence that a controller from one

vendor will interoperate with a switch from another vendor. Alternatively, a very large network operator may define

their own TTPs (and their own apps or controllers), and may require support for these TTPs from their switch

vendors.

OpenFlow Table Type Patterns Version No. 1.0

Page 11 of 55 © 2014 Open Networking Foundation

Even for products that do not include TTP-based implementations, TTPs may be useful for understanding or

clarifying controller/switch interoperability issues.

2.2.6 Step 6: Picking a TTP at Connection Time

For products to perform TTP-based network control, the controller and the switch must have a synchronized TTP

context. This context is defined by a specific (identified) TTP and specific parameter values for the TTP's parameters.

The TTP framework includes a powerful mechanism, based on the OF-Config Protocol, for synchronizing controller

and switch TTP contexts. (A future-proof scheme is preferred for negotiating TTP support between a controller and

switch. With that in mind, the negotiation scheme was named using the umbrella term “NDM” rather than “TTP”.)

The negotiation mechanism allows the OpenFlow Configuration Point (OFCP) to perform several important functions

in support of various scenarios:

 Discovery of available switch-supported TTPs, based on well-known TTP identifiers

 Simple activation of a desired TTP using default parameters

 An optional mechanism for the OFCP to negotiate with the switch for preferred TTP parameters

o Switches that support parameter negotiation must support an RPC extension defined within the

NETCONF framework

Details of the OF-Config1.2-based negotiation mechanism are provided the OF-Config 1.2 specification and its use is

described in a separate document "OpenFlow Controller / Switch NDM Synchronization" available on the ONF

website.

To allow adoption of TTPs and OF-Config1.2 to advance in parallel (to avoid the delays of serial adoption), alternative

mechanisms can also be used to configure the TTP context of both ends of the OpenFlow control connection. For

example, management interfaces in the controller and in the switch (both of which are out-of-scope for this

document) can be used to set up the context on the two ends. Because manually configured TTP contexts may

inadvertently lead to unsynchronized TTP contexts, an OF-Switch extension1 has been proposed to confirm that the

switch is indeed configured with the same TTP context as the controller.

2.2.7 Step 7: Run-time Messaging with TTPs

A key goal of the TTP description approach has been to minimize the impact on the OpenFlow-Switch control

messaging. That goal has been achieved in the sense that OF-Switch control messages, such as flow_mod and

group_mod messages, are no different in the context of an active TTP versus a non-TTP context. That is, the

flow_mods and group_mods that a controller sends to a switch in context of an active TTP will also work if the

controller sends precisely those same messages to a switch (such as a soft switch or NPU-based switch) that offers the

same functionality without explicit support for the TTP.

Some messaging semantics are, however, impacted in the context of an active TTP.

1) Table Features messages will not be allowed to alter table attributes.

2) The switch may reject a message using a new error message if the controller attempts to exceed features

defined by the TTP.

The switch is not required to provide any particular behavior if the controller configures flow_mods, group_mods, or

meter_mods outside the valid set specified by the TTP. It may accept or reject the configuration and, if accepted, may

provide implementation dependent behavior. It is recommended that every switch supporting TTPs also support a

"debug mode" that strictly checks commands for validity with respect to the negotiated TTP and rejects invalid

commands. This mode can be used to diagnose whether or not a controller is conforming to the negotiated TTP in

1 Implementers are encouraged to check the ONF website for information on OpenFlow extensions.

OpenFlow Table Type Patterns Version No. 1.0

Page 12 of 55 © 2014 Open Networking Foundation

configuring a logical switch. Since debug mode checking may impact performance the switch should also provide a

mechanism for enabling/disabling debug mode.

2.2.8 Step 8: TTP-based Testing and Certification

TTPs offer several ways to improve and clarify interoperability. (See Appendix A for further discussion.) Here is a

brief list of the ways in which TTPs aid in establishing interoperability:

 Products (both controllers and switches) with built-in TTP awareness can be independently tested to assess

conformance with specific TTPs.

o TTPs are precise and unambiguous; if both ends conform to a TTP, interoperability is more easily

achieved.

 TTPs can be used as test profiles, even when the products lack built-in TTP awareness.

o The Testing and Interoperability WG has expressed a need for unambiguous test profiles.

o TTP Descriptions allow various market participants to define TTPs and, thus, test profiles.

 TTP Descriptions may in future include test information, to encourage self-testing of TTP conformance.

o As a TTP gains market traction, 3rd party testing of that TTP will be increasingly likely.

o For new TTPs, self-testing provides a mechanism to build adoption until 3rd party testing becomes

available.

To make TTPs more interoperable (and thus more attractive in the market), TTP Descriptions support the inclusion of

test information. TTP developers are encouraged (in terms of “best practice”) to include information regarding

flow_mod and group_mod messages, and additional functionality. This test information will greatly enhance

interoperability based on self-testing by vendors, and will serve as a starting point for conformance testing for TTPs

that are popular enough to justify that level of investment by the larger market.

3 Creating a Table Type Pattern

A TTP is a text file that describes a set of flow tables and the valid flow_mods, group_mods, and meter_mods to be

supported by an OpenFlow logical switch controllable using an OpenFlow-Switch 1.x protocol. Given this association

with the OpenFlow-Switch protocol, it is important for the reader to be familiar with that protocol or be able to refer

to the OpenFlow-Switch 1.3.x protocol specifications while reading this section.

A TTP does not define new OpenFlow protocol features; however, it can require certain protocol features be

supported and can constrain the uses of protocol features to those necessary for a particular network application. A

TTP can also include additional information useful in the development and deployment lifecycle, including:

 parameters – variables that represent flexibility in the implementation of the TTP. Parameters may relate

to table capacity, optional feature support, or others aspects in which implementations may vary.

 flow paths – a set of valid paths through the set of flow tables, used to more precisely specify the

forwarding behavior supported by a logical switch.

A TTP is intended to describe the behavior of a switch that is controllable by an OpenFlow Controller. An OpenFlow

Logical Switch (OFLS) can support the TTP based on an allocation of resources provided by a physical switch. Each

OFLS can be allocated distinct resources, and capacity and/or optional feature capabilities may vary from one OFLS

to another. The resource allocation and optional feature support can be negotiated at initialization time between the

OF Controller and the OFLS. This enables a TTP to be used in a variety of deployment scenarios with varying

resource requirements (as long as the required OFLS behavior is the same).

OpenFlow Table Type Patterns Version No. 1.0

Page 13 of 55 © 2014 Open Networking Foundation

A TTP is used to describe the capabilities required of an OpenFlow Logical Switch in a particular network application.

That is, it is not expected that any TTP would describe all the capabilities of a particular OpenFlow Capable Switch.

Instead, an OpenFlow Capable Switch would normally support a number of TTPs, and each TTP would describe a set

of capabilities required of an OpenFlow Logical Switch playing a particular role in a network architecture. A TTP can

include the following members:

1) metadata, including a unique TTP identifier,

2) security considerations and signing,

3) identifier descriptions

4) required OpenFlow protocol features

5) a table map,

6) a meter table,

7) a list of flow tables, each specifying a set of flow_mod types,

8) a list of group table entry types,

9) a set of TTP parameters, and

10) a set of flow paths.

The language used to write a TTP description is essentially a meta language for describing a set of valid flow_mods,

group_mods, and meter_mods. Therefore the language includes reserved words that correspond to data elements or

data values carried in these control messages. In many cases these reserved words are taken from symbols defined in

the OpenFlow-Switch specification. The TTP language may evolve over time due to 1) extensions to the TTP

description structure, and 2) changes to the OpenFlow-Switch protocol. Therefore the TTP metadata includes an

indication of the version of the TTP language used in writing the TTP.

This specification defines version 1 of the TTP description language (TTPv1). The elements of a TTP are described in

the following sections and an example TTP is provided in Appendix C.

The essential structure of a TTP description is driven by its purpose as a specification of valid OpenFlow control

messages. A TTP description could be encoded in a variety of ways but in light of the possibility of developing TTP

toolsets there is a preference for machine parsable encodings. A number of machine parsable encodings may be

considered including XML, JSON and YAML. In this document we use JSON encoding (RFC4627) because it is

relatively human-friendly (i.e., easier for the author to write and the reader to read) and has a reasonable level of

support in the industry. In the JSON encoding numbers are used occasionally (e.g., for priority values); however,

since JSON limits number formats to decimal notation many header field and mask values are represented as strings.

These strings may employ various formats, including the following:

 C-style hexadecimal format: "0xhhhh" where 'h' is a hexadecimal digit

 IEEE 802 MAC address format – "hh-hh-hh-hh-hh-hh" where 'h' is a hexadecimal digit

 IPv4 address dotted decimal format – "dd.dd.dd.dd" where 'd' is a decimal digit

 IPv6 address format – "hhhh:hhhh::hhhh" where 'h' is a hexadecimal digit (as described in RFC 5952)

Note that while a machine readable representation has been specified, not all aspects of a TTP are machine accessible.

Some constraints specified by a TTP are left to human readable commentary, i.e. "doc" members, and are thus not in

a form suitable for machine consumption. In future revisions of this document additional requirements or

constraints may be supported in machine readable form.

Following the JSON style a TTP description is structured as an object comprising a set of members (name:value pairs).

Each of the members is itself either an object (a set of name:value pairs) or an array of values. Each value may be an

object, array, string, or number. Thus a TTP is structured as a tree of objects and arrays with strings and numbers at

the leaf points. The keywords naming each member of a TTP are shown in Table 1.

OpenFlow Table Type Patterns Version No. 1.0

Page 14 of 55 © 2014 Open Networking Foundation

TTP Member Keyword

Metadata "NDM_metadata"

Identifier descriptions "identifiers"

OpenFlow features required "features"

Table map "table_map"

Meter table "meter_table"

Flow tables "flow_tables"

Group table entry types "group_entry_types"

Required PACKET_OUT actions "packet_out"

TTP parameters "parameters"

Flow paths "flow_paths"

Security considerations and signing "security"

Table 1: TTP member keywords

There are three member names that may be used in any object in the TTP. These are listed in Table 2.

Member Keyword

Object name "name"

Commentary "doc"

Optional functionality tag "opt_tag"

Table 2: General member keywords

The "name" member has a string value that can be used elsewhere in the TTP to refer to the object. The "doc"

member is an arbitrary length string that can be used to provide comments on the object or to specify details for

which a machine readable format is not provided. To improve readability the doc member may be represented as an

array of strings to be concatenated, with newlines or spaces inserted between elements, when displayed. The

"opt_tag" member is used to indicate optional functionality and is described below.

There are meta-members that may be inserted into a TTP where it is either (a) optional to support a branch of the

TTP, or (b) optional to use a branch of the TTP. The use and placement of meta-members is up to the author of the

TTP. The keywords for optional support meta-members are shown in Table 3 and the keywords for optional use

meta-members are shown in Table 4.

OpenFlow Table Type Patterns Version No. 1.0

Page 15 of 55 © 2014 Open Networking Foundation

Support Meta-Member Keyword

All elements on the branch must be

supported (default)
"all"

At least one element on the branch must

be supported
"one_or_more"

Support for all elements on the branch

is optional
"zero_or_more"

Table 3: Support meta-member keywords

Use Meta-Member Keyword

One element of the branch must be used "exactly_one"

One element of the branch may be used "zero_or_one"

Table 4: Use meta-member keywords

Typically the meta-members are used to select branches from an array. That is, an array of elements is converted into

an object containing meta-members. Each meta-member has as its value an array that is a subset of the original array

or one element of the original array. Meta-members can be used to make a TTP more compact; however, they should

be used sparingly as they may make interpreting the TTP more complex.

The support meta-members provide a simple optioning capability for cases in which support of the TTP does not

requires support of an optional branch. A more powerful form of optioning is also supported for cases in which an

optional functionality requires support of objects in distinct branches of the TTP. In these cases objects may be

tagged by including an "opt_tag" member with a value representing the optional functionality. The inclusion of an

"opt_tag" member is similar to the insertion of a "zero_or_more" support meta-member before the object, but it also

provides a tag value that can be associated with other objects in the TTP. All of the objects with a given "opt_tag"

value are considered as a unit when negotiating support for the optional feature represented by that value. In other

words, when an optional functionality is provided by multiple flow-mod-types in separate flow tables or includes

associated group bucket types, that functionality is described in distinct branches of the TTP. Typically, the set of

flow-mod-types and group bucket types required for the optional functionality should be enabled or disabled together.

The opt_tag member associates those separate flow-mod-types and group bucket types as a single unit, providing a

means for the TTP designer to make clear that the optional functionality comes as a single package.

Optional functionality can be negotiated, as part of TTP negotiation, using the "OptFunc" built-in parameter (see

section 3.9).

3.1 TTP Metadata

Each TTP is uniquely identified by the following information:

 the organization defining the TTP (a string unique to the organization in reverse-DNS format)

 the NDM type string "TTPv1" indicating the TTP description language and version

 the name of the TTP

OpenFlow Table Type Patterns Version No. 1.0

Page 16 of 55 © 2014 Open Networking Foundation

 a version number, which may include multiple parts, indicating the version of this TTP description

In a TTP description the NDM_metadata member contains this identifying information. NDM metadata also

indicates the OpenFlow-Switch protocol version on which the TTP is based. It should also include a general

description of the TTP (i.e., a "doc" member). For example:

 "NDM_metadata": {

 "authority": "org.opennetworking.fawg",

 "type": "TTPv1",

 "name": "L2-L3-ACLs",

 "version": "1.0.0",

 "OF_protocol_version": "1.3.3",

 "doc": ["Example of a TTP supporting L2 (unicast, multicast, flooding), L3 (unicast only),",

 "and an ACL table."]

 }

The keywords naming the members of the NDM_metadata object are shown in Table 5.

Metadata Member Keyword

Organization responsible for the TTP "authority"

NDM type (language version) "type"

TTP name "name"

Version of this TTP "version"

OpenFlow-Switch protocol version on

which the TTP is based
"OF_protocol_version"

Table 5: Metadata member keywords

The unique TTP identifier comprises the four members authority, type, name, and version. Uniqueness is

provided by allowing each TTP author to use their own DNS name to form the authority member and within that

manage their own TTP name and version identifiers. The TTP's identifying information can also be encoded as a

string comprising the authority, NDM type, name, and version separated by forward slashes. For example, the TTP

identifying information above is encoded as follows:

org.opennetworking.fawg/TTPv1/L2-L3-ACLs/1.0.0

The version number contains three subfields: <major>.<minor>.<edit>. The last subfield <edit> is numeric and

increasing for newer versions. From an implementation perspective, changes in the <edit> field should make no

difference (e.g., there may be changes in variable names, flow table names, doc strings, etc. but nothing that impacts

interoperability). The <minor> subfield is numeric and increases for newer versions. When the <minor> subfield is

incremented, the newer TTP should be a compatible superset of the previous TTP version, providing the same tables

(with the same table numbers) and same parameters (with the same parameter names) as the earlier TTP. The point

is, the same flow mod messages and the same parameter negotiations that are acceptable in the earlier TTP version

must still be valid in the new TTP version differing only in minor version number. Thus the newer TTP version can

add a new flow-mod-type, but it cannot remove an old flow-mod-type, or change a parameter name, or renumber

tables. The latter changes would require a increase in the TTP’s major version number. This means that a controller

(or OFCP) that is looking for TTP version 1.2.0 can use 1.3.0 if it finds that instead (but not necessarily the other way

around). The <major> subfield is numeric and increases for newer versions. When a new version of a TTP requires

changes to flow-mod-types or parameters, then the new TTP version will not offer backward compatibility to the

previous version at the level of OpenFlow Switch messaging. Instead, the new TTP version offers compatible flow

OpenFlow Table Type Patterns Version No. 1.0

Page 17 of 55 © 2014 Open Networking Foundation

paths for all (or at least most) flow paths in the previous TTP version. (“Compatible flow paths” means that the new

path contains the same packet modifications and forwarding actions, based on the same match fields, as the earlier

flow path.) But the new matches and actions could be located in different tables. In other words, a new table may

have been inserted in order to support new flow paths (new packet handling) and so the previous flow-mod

messaging and constraints would not work with the new TTP. Still, an application that worked with the previous TTP

could be updated to work on the new TTP. When changes to a TTP are so dramatic that there is very little backward

compatibility, then the time has come to change the name rather than the version number.

3.2 Identifiers

The identifiers member is an array of variable names and/or extension identifiers with descriptions.

 Variables convey information about constraints on values that may be used in flow_mods, group_mods, or

meter_mods specified by the TTP. A variable name is enclosed in angle brackets as shown in the example below.

 {"var": "<port_vid>",

 "doc": "A VLAN ID to be assigned to untagged or priority tagged frames received on a port."},

Some variables represent elements that must conform to the flow_mod, group_mod, or meter_mod types defined in

the TTP. These variables are not included individually in the variables list. Instead the structure of these variables is

described, as in the example below for group table entry type variables.

 {"var": "<<group_entry_types:name>>",

 "doc": ["An OpenFlow group identifier (integer) identifying a group table entry",

 "of the type indicated by the variable name"]}

The extra set of angle brackets indicate that the variable name itself is variable and, as the description indicates, the

variable name must be the name of a group entry type defined in the TTP.

Variable Element Member Keyword

Variable name "var"

Variable range "range"

Variable description "doc"

Table 6: Variable element member keywords

A variable can specify a range of valid values using the range member. This member has a string value and the

convention "x..y" where x and y are integers is used to indicate a range of integer values.

 {"var": "<local_vid>",

 "range": "1..4094",

 "doc": "A VLAN ID valid on the wire at a port."},

Extension identifiers allow string names to be assigned to extensions for instructions, actions, match fields, or error

codes. This allows these identifier strings to be used in flow_mod type specifications along with strings taken from

the OpenFlow standard. When used the identifier strings must be prefixed with "$" to indicate that they are

identifiers defined in the TTP. The identifier strings defined must be unique, that is, no two extension ID elements

can use the same identifier string.

OpenFlow Table Type Patterns Version No. 1.0

Page 18 of 55 © 2014 Open Networking Foundation

Extension ID Element Member Keyword

Identifier string "id"

Identifier type "type"

Experimenter ID "exp_id"

Experimenter code "exp_code"

Identifier description "doc"

Table 7: Extension identifier element member keywords

Each identifier element includes the following members:

 id: The identifier string

 type: One of "field", "inst", "action", or "error"

 exp_id: The Experimenter ID for the extension

 exp_code: The code point for the extension

 doc: A description of the identifier

The exp_code member can be used to indicate a code point, if one is defined, that distinguishes this extension from

others of the same kind using the same Experimenter ID. For example, if an Experimenter ID is used to add multiple

actions or instructions and these extensions include a code point for distinguishing the added actions or instructions,

that code point can be indicated using the exp_code member. If a header field extension uses the oxm_field value

to distinguish different header fields added under the same Experimenter ID, the exp_code member can indicate the

oxm_field code point. For an error code extension the exp_code should indicate the value for exp_type defined

for the added error. If the exp_code member is not useful it can be omitted.

3.3 Required Protocol Features

If specific protocol features are required for the application(s) the TTP is intended to support, these can be indicated

in the features member. This member is an array of feature descriptions. A feature description may be machine

readable or not, depending on whether or not there is a specific named element in the protocol associated with the

feature.

Feature Element Member Keyword

Feature identifier "feature"

Feature description "doc"

Table 8: Extension identifier element member keywords

The feature member is a string that identifies the required feature. A string derived from the openflow.h header file

can indicate a specific message element is required. Such strings use language element names in the header file to

identify specific message fields. For example, the string "ofp_flow_stats.packet_count" would indicate that

the packet counter for a flow entry is required (a field in the OFPMP_FLOW reply message). The string

"ofp_flow_mod.idle_timeout" would indicate that flow entry aging must be supported (a field in the

OpenFlow Table Type Patterns Version No. 1.0

Page 19 of 55 © 2014 Open Networking Foundation

OFPT_FLOW_MOD message). If a feature is required for specific cases but does not have to be universally

supported, this can be indicated using a context identifier. A context identifier can be a table name, flow_mod type

name, group entry type name, or built-in flow entry name followed by "::". For example, if the flow entry packet

count is only required for the built-in flow entry used for MAC learning in the TTP example in Appendix C, the string

would be "MAC-Miss::ofp_flow_stats.packet_count".

Extensions that do not have a simple association with message elements or are associated with too many message

elements to be practical can be indicated using a suggestive string. For example, if message bundle support is

required the string "Bundle messages" could be used. Alternatively the extension number can be used as a way to

refer to the document specifying a particular extension. For message bundles the string "ext230" could be used to

refer to the file openflow-switch-extension-ext230-stateless.pdf in which this extension is specified for OpenFlow 1.3.

For example, a requirement to support notification of changes in the flow tables, group table, and meter table can be

indicated as shown here.

 "features": [

 {"feature": "ext187",

 "doc": "Flow entry notification Extension – notification of changes in flow entries"},

 {"feature": "ext235",

 "doc": "Group notifications Extension – notification of changes in group or meter entries"}

]

When a suggestive string is used the description in the doc member must make the feature requirement clear enough

for an implementer to understand it.

3.4 Table Map

The table_map member is an object in which each member name is a table name associated with a flow table in the

TTP and the member value is the table number assigned to that flow table. These tables are not required to be

distinct types; however, it may be uncommon to find multiple flow tables of the same type in a TTP. Including the

table map allows flow tables to be referenced by name in the remainder of the TTP making the flow table relationships

clearer for the reader. This also enhances portability and reuse of chunks of TTP description and eases maintenance

when table numbers must change but the relationships between tables (i.e., Goto-Table instructions) do not. For

example:

 "table_map": {

 "ControlFrame": 0,

 "IngressVLAN": 10,

 "MacLearning": 20,

 "ACL": 30,

 "L2": 40,

 "ProtoFilter": 50,

 "IPv4": 60,

 "IPv6": 80

 }

The table map also governs the assignment of flow table numbers. The first table in the array is assigned table

number 0 (zero) and each subsequent table is assigned a higher table number. The numbering may have gaps (e.g.,

subsequent tables may be numbered 10, 20, 30, etc.) to allow for the addition of new flow tables to a revised TTP

without requiring changes to the numbering of existing tables.

OpenFlow Table Type Patterns Version No. 1.0

Page 20 of 55 © 2014 Open Networking Foundation

3.5 Meter Table

The meter_table member is an object containing an array of meter type definitions and an array of built-in meter

definitions.

Meter Table Member Keyword

Meter type definitions "meter_types"

Built-in meter definitions "built_in_meters"

Table 9: Meter table member keywords

Each meter type definition includes a name , the band type ("DROP" or "DSCP_REMARK"), and the range of valid

values for rate and burst size. The defined meter types may be used in flow_mod_types or built_in_flow_mods

where indicated in the flow tables section of the TTP. For example the member

 "meter_types": [

 {"name": "ControllerMeterType",

 "bands": [{"type": "DROP", "rate": "1000..10000", "burst": "50..200"}]

 },

 {"name": "TrafficMeter",

 "bands": [{"type": "DSCP_REMARK", "rate": "10000..500000", "burst": "50..500"},

 {"type": "DROP", "rate": "10000..500000", "burst": "50..500"}]

 }

]

defines two meter types, one for limiting traffic to the controller and one for policing IP traffic flows. The

instantiation and detailed configuration of meters (i.e., setting specific rate and burst size) are left to the controller

when the TTP is taken into use.

A meter instruction with a meter type name may be included as an option in the instruction set of a flow mod type

description to indicate that the controller may configure a meter and include it in a flow mod of that type to meter the

associated traffic flow.

Meter Types Element Member Keyword

Meter type name "name"

Meter type description "bands"

Table 10: Meter type element member keywords

OpenFlow Table Type Patterns Version No. 1.0

Page 21 of 55 © 2014 Open Networking Foundation

Meter Band Element Member Keyword Valid Values

Meter band type "type"
enum ofp_meter_band_type string

after "OFPMBT_"

Meter band rate range "rate"
string "m..n" indicating range of

supported meter rates in KBPS

Meter burst range "burst"
string "m..n" indicating range of

supported burst sizes

Table 11: Meter type bands element member keywords

Each built-in meter definition specifies a meter instance that is expected to exist when the TTP is taken into use. The

controller may adjust the meter parameters, if desired, within the limits of the meter's associated type. For example,

the following member defines two built-in meters to be used to limit traffic sent to the controller.

 "built_in_meters": [

 {"name": "ControllerMeter", "meter_id": 1,

 "type": "ControllerMeterType", "bands": [{"rate": 2000, "burst": 75}]},

 {"name": "AllArpMeter", "meter_id": 2,

 "type": "ControllerMeterType", "bands": [{"rate": 1000, "burst": 50}]}

]

Built-In Meter Element Member Keyword Valid Values

Meter name "name" string

Meter identifier "meter_id" meter instance number

Meter type "type"
name of a meter type defined in

this TTP

Meter bands "bands" array of meter band objects

Table 12: Built-in meter element member keywords

Built-In Meter Bands Element Member Keyword Valid Values

Meter band rate "rate"
number within the rate range for the

meter type

Meter burst "burst"
number within the burst range for the

meter type

Table 13: Built-in meter band element member keywords

3.6 Flow Tables

The flow_tables member is an array of flow table descriptions. Each flow table description comprises an array of

flow_mod_types and, optionally, an array of built_in_flow_mods and an array of table_subsets. Each flow

OpenFlow Table Type Patterns Version No. 1.0

Page 22 of 55 © 2014 Open Networking Foundation

table is given a name to be included in the table map and used in GOTO_TABLE instructions. A description may be

provided to explain the role or function of the flow table in the TTP. The structure of a flow table description is shown

in the following example:

 {

 "name": "IngressVLAN",

 "doc": ["Ingress VID processing table, including:",

 " - accepting or blocking untagged and priority tagged frames",

 " - accepting or blocking VLAN tagged frames",

 " - ingress VID filtering control",

 " - (optional) ingress VID translation"],

 "flow_mod_types": [

 …

],

 "built_in_flow_mods": [

 …

],

 "table_subsets": [

 …

]

 }

The flow_mod_types member may include optional elements, i.e., flow_mod types that may or may not be

supported by a switch supporting the TTP. Optional flow_mod types are indicated by inserting a meta-element in the

array as described in 3.6.1.

Flow Table Element Member Keyword

Flow table name "name"

Flow table entry types "flow_mod_types"

Built-in flow table entries "built_in_flow_mods"

Named paths through this flow table "table_subsets"

Table 14: Flow table element member keywords

The following subsections describe the parts of a flow table description.

3.6.1 flow_mod Types

Each flow_mod type element comprises at least a name, match_set, and instruction_set. It may also include a

priority and description. For example, the following flow_mod type element allows priority tagged MAC

frames to ingress a switch port.

 {

 "name": "Allow-Priority-Tagged",

 "priority": "6..7",

 "doc": "Allow priority tagged traffic on a port or all ports.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

OpenFlow Table Type Patterns Version No. 1.0

Page 23 of 55 © 2014 Open Networking Foundation

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<port_vid>"}]},

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 }

The priority of a flow_mod type may be specified to interact appropriately with other flow_mod types defined for the

flow table. In the example above, the priority must be higher than the built-in flow_mod instance in the table

("Default-Allow-Priority-Tagged") that sets VLAN_VID to 1 (the default VID) to ensure VLAN_VID is set to the

<port_vid> value instead.

Variables of the form "<variable_name>" may be used to indicate values to be used in flow_mods. This enables

both indicating the role of the value (as with "<port_vid>" in the example above) and indicating where the same

value is used in different places in the TTP.

Flow_Mod Type Member Keyword

Flow_mod name "name"

Flow_mod priority
"priority" or

"priority_rank"

Match condition "match_set"

Instructions "instruction_set"

Table 15: Flow_mod type member keywords

The priority and priority_rank specify the valid priority values for the flow_mod type. The value of a

priority member is an integer greater than zero, or an integer range of the form "n..m" where n and m are

integers with 0 < n < m. Specifying a priority range allows the controller to differentiate flow_mods of the same

type, for example to make a narrower match higher priority than an overlapping broad match. The value of a

priority_rank member is an integer greater than zero. Priority rank can be used to specify relative priorities for

each flow_mod type. Flow_mods having types of different priority rank must be assigned priorities in non-

overlapping ranges, selected by the controller, and the range for a lower rank must be lower than the range for a

higher rank. Using priority rank allows more flexibility for the controller to assign priorities but may make mapping

the TTP to fixed-function hardware platforms more difficult. If no priority member is included in the flow_mod type,

any priority greater than zero is valid for flow_mods of that type. When the match type "prefix" (see below) is used

the priority for a flow_mod must be set to the length of the prefix mask, so no priority member is allowed in the

flow_mod type specification in this case.

The match_set member is an array of match field descriptions. Each match field description includes a field

member identifying the header or metadata field to be matched. Some fields have prerequisite field matches that

OpenFlow requires be included in the match set. If a match set includes a match field with prerequisites, the

transitive closure of these prerequisites is assumed to be included in the match set as well, whether or not they are

explicitly listed. In addition to identifying the field, a match field member may include any of the following:

 match_type: match type for the field, one of

 exact – exact match only, equivalent to all 1's mask, default if match_type not specified

 mask – arbitrary bit mask allowed

OpenFlow Table Type Patterns Version No. 1.0

Page 24 of 55 © 2014 Open Networking Foundation

 prefix – mask must be a set of contiguous bits, beginning with the most significant bit

of the field

 all_or_exact – mask is either all 0's or all 1's (i.e., field may be omitted in match)

 mask: a bit mask identifying bit positions that may be matched to a variable value

 (must be consistent with match_type)

 value: a fixed value for the field or a variable name

 const_mask: a bit mask indicating bit positions that must have fixed values in the match

 (needed only if there are other bits that are to be matched to a variable)

 const_value: a value indicating the required settings for the bits identified in const_mask

 (needed only if there are other bits that are to be matched to a variable)

The match type "prefix" is used to indicate Longest Prefix Match (LPM) and may be associated with at most one field

in a match set. There may be other fields in an LPM match set and is up to the TTP author to ensure that an extended

match set is unambiguous and implementable.

For example, an IP forwarding flow table could use a prefix match type to implement basic longest prefix match

(LPM) for an IPv4 address as shown in the example below.

 "match_set": [

 {"field": "IPV4_DST", "match_type": "prefix"}

],

Matches may use a constant mask and value to ensure a subset of the bits in a masked match field are set or unset

and a mask and variable value for the remainder of the field. For example, a flow_mod for flooding in a VLAN (when

no higher priority flow_mod matches the ETH_DST) may use a constant mask and value to ensure the VID is valid

and a variable match against the (masked) VID value.

 "match_set": [

 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<VID>"}

]

Match Set Element Member Keyword Valid Values

Match field "field"
enum oxm_ofb_match_fields string

after "OFPXMT_OFB_"

Match type "match_type"
"exact", "mask", "prefix",

"all_or_exact"

Mask for matching bits "mask" bitmap

Value for matching bits "value" bitmap or variable name

Mask for fixed value bits "const_mask" bitmap

Value for fixed value bits "const_value" bitmap

Table 16: Match set element member keywords

The instruction_set member is an array of instructions for the flow_mod. These are encoded following the

OpenFlow instruction structure. For example, an instruction set to push a VLAN tag with the port VID onto an

untagged frame and continue to the next table is shown below. The OpenFlow-Switch specification constrains the

content and execution order of an instruction set. The instruction set may include at most one instruction of each

OpenFlow Table Type Patterns Version No. 1.0

Page 25 of 55 © 2014 Open Networking Foundation

type and, although the instructions in an instruction set may be listed in any order, it is recommended that

instructions be listed in the OpenFlow specified order of execution.

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "PUSH_VLAN"},

 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<port_vid>"}]},

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

Instruction Set Element

Member
Keyword Valid Values

Instruction type "instruction"
enum ofp_instruction_type string

after "OFPIT_"

Table name "table"
string name of a table defined in

this TTP

Metadata "metadata" 64 bit value

Metadata mask "metadata_mask" 64 bit bitmap

Action list "actions" array of action objects

Table 17: Instruction set element member keywords

OpenFlow Table Type Patterns Version No. 1.0

Page 26 of 55 © 2014 Open Networking Foundation

Action Object Member Keyword Valid Values

Action type "action"
enum ofp_action_type string after

"OFPAT_"

Port identifier "port"

port number or variable name or

reserved port name (enum

ofp_port_no string after "OFPP_")

Group identifier "group_id"
group table entry type name defined

in this TTP

Queue identifier "queue_id"
queue number for the switch port or

variable name

MPLS TTL value "ttl" MPLS TTL value or variable name

IP TTL value "ttl" IP TTL value or variable name

EtherType value "ethertype" EtherType value

Set field name "field"
enum oxm_ofb_match_fields string

after "OFPXMT_OFB_"

Set field value "value"

value for the field being set,

e.g., bitmap of the appropriate

size, or variable name

Meter name "meter_name"
Name of a meter type or built-in

meter

Table 18: Action object member keywords

The match set and instruction set may include optional elements indicating that a controller may optionally select

these elements in creating a flow_mod. All the optional elements in a match set or instruction set must be supported

by a switch supporting the TTP so the controller is free to select any match set or instruction set option.

Examples of optional instruction_set elements:

Selecting among different instruction sets, without optional instructions:

 "instruction_set": {"exactly_one": [

 [

 {"instruction": "METER", "meter_name": "ControllerMeter",

 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",

 "sent to the controller"]},

 {"instruction": "APPLY_ACTIONS",

 "actions": [{"action": "OUTPUT", "port": "CONTROLLER"}]

 }],

 [

 {"instruction": "APPLY_ACTIONS",

 "actions": [{"action": "OUTPUT", "port": "CONTROLLER"}]

 }]

]}

OpenFlow Table Type Patterns Version No. 1.0

Page 27 of 55 © 2014 Open Networking Foundation

Optional instructions within an instruction set:

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "GOTO_TABLE", "table": "IPv4"}

]

Optional flow_mod types can be included in a TTP. These are not required to be supported to claim support for the

TTP, but if they are supported they provide additional capabilities that may be useful in some applications of the TTP.

To indicate optional support for some flow_mod types meta-members are inserted in the flow_mod_types array as

follows:

 "flow_mod_types": [

 {"all": [

 <required flow_mod types>

],

 "zero_or_more": [

 <optional flow_mod types>

]}

]

The flow_mod types preceded by "all" are required. Those preceded by "zero_or_more" are optional. If at least one

flow_mod type in a particular set must be supported but support for more than one is optional the meta-member

"one_or_more" may be used.

3.6.2 Built-in flow_mods

The built_in_flow_mods member of a flow table description is an array of specific flow entries that are required

to be installed in the flow table. These are usually flow_mods that implement default behaviors that are expected to

be present without any flow programming. For example, a built-in flow_mod to block the set of control addresses

that are not permitted to be forwarded by an 802.1Q bridge is shown below.

 {

 "name": "Control-Frame-Filter",

 "doc": "Mandatory filtering of control frames with C-VLAN Bridge reserved DA.",

 "priority": 1,

 "match_set": [{"field":"ETH_DST","mask":"0xfffffffffff0","value":"0x0180C2000000"}],

 "instruction_set": []

 }

A built-in flow_mod includes a name, priority, match_set, and instruction_set and optional description.

The members for a built-in flow_mod object are the same as those for a flow_mod type object (Table 15, Table 16,

Table 17, and Table 18) except that the match set and instruction set must not include any variable names, though

they may contain identifiers with well-defined values, and meta-members must not be used.

A built-in flow mod may not be modified or deleted by the controller. If the Controller sends a flow_mod matching a

built-in flow_mod in both the match set and the instruction set the switch should accept it (i.e., return a successful

response) without altering the built-in flow table entry except to set the cookie value (for detailed behavior see B.3). It

is possible to override a built-in flow mod using a higher priority flow mod if a compatible flow_mod type is defined

for the flow table.

OpenFlow Table Type Patterns Version No. 1.0

Page 28 of 55 © 2014 Open Networking Foundation

3.6.3 Table Subsets

The table_subsets member is an array of table subset definitions. Each table subset has a name that is an alias for a

set of flow_mod types or flow_mod instances. The table subset name can be used in flow path descriptions to

indicate progressing through a flow table via any of the flow_mod types or instances in that table subset. For

example, a subset for an IngressVID table may be defined as follows:

 "table_subsets": [

 {"name": "IV-pass",

 "subset": ["Allow-Untagged", "Allow-Priority-Tagged", "Disable-Ingress-VID-Filter",

 "Ingress-VID-Allow", "Ingress-VID-Filter", "Ingress-VID-Translate",

 "Default-Allow-Untagged", "Default-Allow-Priority-Tagged",

 "Default-Disable-Ingress-VID-Filter"]

 },

 {"name": "IV-drop",

 "subset": ["Block-Untagged", "Block-Priority-Tagged", "Enable-Ingress-VID-Filter",

 "MISS"]

 }

]

This defines two subsets, one that pass to the next table (IV-pass) and one that drops the packet (IV-drop). Table

subsets can be used as aliases for a set of flow_mods in flow paths where finer grained identification of the path

through a particular flow table is not needed. The table subset indicates that any one of flow_mods in the table subset

may be matched as a part of the flow path.

Table Subsets Element Member Keyword Valid Values

Name of table subset "name" string

Set of entry types "subset"

array containing names of flow_mod

types or built-in flow mods defined

for this flow table or "MISS"

(representing the table miss

condition)

Table 19: Table subsets member keywords

Defining table subsets is not required; however, these may be helpful in reducing the number of flow paths that must

be defined to represent the required set for the TTP. For example, the "IV-pass" table subset in the example above

allows one flow path description to include all the paths through the IngressVLAN flow table (as described in 3.10).

This technique reduces the number of flow path descriptions by using a single flow path description to represent

multiple flow paths, each including a different flow mod type or flow mod instance from a given flow table.

3.7 Group Table Entries

If a TTP uses the group table, the types of group table entries required are described in the group_entry_types

member. Each group entry type includes a name, group_type, and an array of bucket_types, and optionally a

description. The group type is one of the OpenFlow group types: ALL, SELECT, INDIRECT, or FF (fast failover).

Each bucket type includes a name and an OpenFlow action set. It is recommended that the actions in the action set

be listed in the order of execution specified by the OpenFlow protocol.

 {

 "name": "EgressPort",

 "doc": ["Output to a port, removing VLAN tag if needed.",

OpenFlow Table Type Patterns Version No. 1.0

Page 29 of 55 © 2014 Open Networking Foundation

 "Entry per port, plus entry per untagged VID per port."],

 "group_type": "INDIRECT",

 "bucket_types": [

 {"name": "OutputTagged",

 "action_set": [{"action": "OUTPUT", "port": "<port_no>"}]

 },

 {"name": "OutputUntagged",

 "action_set": [{"action": "POP_VLAN"},

 {"action": "OUTPUT", "port": "<port_no>" }]

 },

 {"opt_tag": "VID-X",

 "name": "OutputVIDTranslate",

 "action_set": [{"action": "SET_FIELD", "field": "VLAN_VID", "value": "<local_vid>"},

 {"action": "OUTPUT", "port": "<port_no>" }]

 }

]

 }

In the example above a group entry of type EgressPort can contain only one bucket (i.e., INDIRECT group type allows

only one bucket) but that bucket may either a bucket that executes one output action (OutputTagged) or a bucket that

strips the VLAN tag from the packet and then executes one output action (OutputUntagged). A third bucket type that

translates the VID on egress (OutputVIDTranslate) is available if the "VID-X" option is supported. Since the

INDIRECT group type limits the group entry to one bucket there is no need to use a meta-member in the TTP to

impose this constraint.

Group Table Entry Type Element

Member
Keyword Valid Values

Group table entry type name "name" string

Group type "group_type"
enum ofp_group_type string

after "OFPGT_"

Bucket types allowed "bucket_types"

array containing bucket

objects or names of bucket

type objects defined

elsewhere in this TTP

Table 20: Group table entry member keywords

Bucket Type Member Keyword Valid Values

Bucket type name "name" string

Action set "action_set"
array of action objects

(Table 18)

Table 21: Bucket type object member keywords

3.8 PACKET_OUT support

A TTP may contain a packet_out member specifying the actions that can be associated with a PACKET_OUT

message. This member is an array of action lists. Each action list is an array of action objects (Table 18) representing

an action list that may accompany a PACKET_OUT message. The port identifier "TABLE" may be used in an output

action to indicate the packet is to be processed by the OpenFlow pipeline.

OpenFlow Table Type Patterns Version No. 1.0

Page 30 of 55 © 2014 Open Networking Foundation

3.9 TTP Parameters

A TTP may have a set of parameters that govern aspects of the TTP's instantiation in a logical switch. These may

include flow table sizes, indication of support for optional features, or other aspects of a TTP's implementation in

which a controller may have interest. Parameters are defined but do not have values in the TTP. The parameter

values are negotiated or set when the OFLS is created or when it is connected to a controller. Some parameters

represent capacities guaranteed by the switch. In this case the controller may use resources up to the limit of a stated

parameter, but not beyond. For example, in the L2-L3-ACLs TTP the parameter set includes the table sizes for tables

containing forwarding flow entries.

 "parameters": [

 {"name": "ACL::TableSize", "type": "integer"},

 {"name": "L2::TableSize", "type": "integer"},

 {"name": "IPv4::TableSize", "type": "integer"},

 {"name": "IPv6::TableSize", "type": "integer"},

 {"name": "Meter::TableSize", "type": "integer",

 "doc": "Number of meters that can be configured in the switch."},

 {"name": "Meter::Accuracy", "type": "integer",

 "doc": "Accuracy of meters on the switch."},

 {"name": "OptFunc", "type": "array of opt_tag values",

 "doc": "Support for optional functions can be negotiated using the OptFunc parameter."}

]

Each parameter has a name and a type. A parameter description may, but is not required to, indicate a default value

by including a "default" member.

Parameter Element Member Keyword Valid Values

Parameter name "name" string

Parameter type "type" string

Parameter default value "default" value of parameter type

Table 22: Parameter element member keywords

One built-in parameter is defined in this specification – the "OptFunc" parameter. This parameter may be used to

negotiate support for optional functionality in the TTP. The value of the "OptFunc" parameter is an array of items

that represent optional functionality, including names associated with optional flow-mod names, optional group-mod

names, optional bucket names and opt_tag values. Optional functionality (in the form of flow_mod_types,

group_mod_types and buckets that may be optionally supported in the switch) is expressed using support meta

members and the opt_tag member. (See the discussion of support meta members and the opt_tag member earlier

in Section 3.)

Some parameters are associated with specific flow tables (e.g., the maximum number of flow table entries supported).

Parameters associated with a specific flow table use the flow table name as a scope identifier (a prefix followed by '::')

in the parameter name. For example, the maximum number of entries in the MAC forwarding table "L2" is indicated

by the parameter "L2::TableSize".

3.10 Flow Paths

The flow_paths member is an array of flow path descriptions, each representing a required (supported) path

through the set of flow tables and group table entries in the TTP. A flow path description includes a name and a

OpenFlow Table Type Patterns Version No. 1.0

Page 31 of 55 © 2014 Open Networking Foundation

path. The path is an array of flow_mod type or built-in flow mod names and group entry type names indicating the

entries executed for a packet processed by the flow tables in the TTP. For example a flow path for an L2 multicast

frame in the L2-L3-ACLs TTP may look like the following:

 {"name": "L2-4",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACL-skip","VID-flood",

 "VIDflood", ["EgressPort"]]

 }

Each flow path specified in a TTP must be consistent with the instructions (e.g., GOTO_TABLE) and actions (e.g.,

GROUP) specified in the flow_mod types and group entry types to which they correspond. If this is not the case, the

flow path is incorrect.

A flow path may use the name of a table_subsets element to represent any one of a set of flow mod types, all of

which are valid for the given flow path. For example, the flow path above uses the table subset "IV-pass" that

represents several possible paths through the IngressVLAN flow table. The remaining entries are names of specific

flow_mod types or built-in flow_mods and group entry types. If multiple instances of a group entry type may be

invoked (e.g., by multiple buckets in an ALL group) this is indicated by putting the group entry type name in brackets.

For example, in the flow path above the EgressPort group entry type is enclosed in brackets to indicate that multiple

entries of this type may be executed in this flow path.

Flow Path Element Member Keyword Valid Values

Flow path name "name" string

Supported flow path "path"

array of object names from

flow types, built-in

flow_mods, table_subsets,

or group entry types or

"PACKET_OUT"

Non-supported flow path "nopath"

array of object names from

flow types, built-in

flow_mods, table_subsets,

or group entry types or

"PACKET_OUT"

Table 23: Flow path element member keywords

Flow paths may be specified to reduce the set of paths that must be supported to a number less than the full set of

possible paths through the TTP. They are also useful as a foundation for a set of test cases that can be used to check

compliance with the TTP.

A flow path that results in a packet being sent to the controller may have the element "CONTROLLER" appended to

the list as a hint to the reader. A flow path that is initiated by a PACKET_OUT message being output to "TABLE" may

begin with "PACKET_OUT" as the first element.

The flow_paths member is not required to be included in a TTP. If no flow_paths member is included in a TTP it

is assumed that all possible paths through the TTP must be supported. If a flow_paths member contains only

"nopath" elements this indicates that all flow paths except those indicated by "nopath" must be supported.

OpenFlow Table Type Patterns Version No. 1.0

Page 32 of 55 © 2014 Open Networking Foundation

3.11 Security

In current networks, attackers may need to spend significant effort to find the vulnerabilities of network devices

which can be exploited in attacks. A TTP may provide attackers a chance to obtain detailed information about the

behavior and capabilities of a logical switch. Using a TTP, an attacker may be able to analyze packet forwarding

policies (e.g., firewall capabilities) and gain other useful information. Therefore, when writing a TTP it is important

to carefully assess the design and try to identify and remove vulnerabilities which could be taken advantage of by

attackers and result in potential security risks. As part of this work, for each TTP the designer should provide

guidelines about how to set the values of adjustable parameters to prevent or limit security breaches.

Because a TTP is used to instruct the implementation of capable switches, a tampered or forged TTP may result in

unacceptable loss to device vendors. For example, a TTP might be modified to change aspects of the datapath model

that impact hardware design and result in incorrect or insufficient hardware implementations. A TTP might also be

modified to automatically install flow entries that support traffic snooping and these may go undetected if the TTP

implementation process is fully automated. Therefore, to enhance security when distributing TTPs additional

measures can be taken to secure the TTP. For instance, when an organization publishes its TTPs on a website, the

website can provide TLS for subscribers to authenticate the website and generate a security channel protecting the

TTP documents from being tampered with during transfer. Sometimes subscribers also need to be authenticated,

especially when they try to download private TTPs. The sensitive contents of private TTPs need to be encrypted

during transfer.

Note that it is possible to publish public TTPs on third party websites which may not have sufficient security

protection. Therefore, there should be a means to associate a TTP with sufficient information to prove it validity.

First of all, in order to avoid confusion, each TTP must have a globally unique ID. The NDM_metadata member

fulfills this unique identity requirement. In addition, the publisher should generate a signature for the TTP with its

private key and provide necessary instructions for subscribers to find out the proper public key for verifying the

signature. Existing certificate management mechanisms such as PKI, PGP, and DKIM can all be candidates. The

valid period of the signature should be provided. Any TTP with expired signatures must not be trusted any more.

Existing techniques for signing documents can be used for TTPs. The signature members of the security object

provide these capabilities.

To address these security considerations a TTP can include a security member that provides guidance on secure

use of the TTP and secures the TTP itself.

 "security": {

 "doc": ["This TTP is not published for use by ONF. It is an example and for",

 "illustrative purposes only.",

 "If this TTP were published for use it would include",

 "guidance as to any security considerations in this doc member."]

 }

Security Member Keyword Valid Values

Security guidelines "doc"
string providing guidance

on secure use of the TTP

Table 24: Security member keywords

The doc member contains guidance related to the secure use of the TTP. The sig member is a digital signature,

securing the content of the TTP.

OpenFlow Table Type Patterns Version No. 1.0

Page 33 of 55 © 2014 Open Networking Foundation

As TTPs become more widely used in SDN development the ability to secure their content will become more

important. A TTP signing mechanism will be specified in a future revision of this document by including additional

properties in the security object. The signature mechanism for a TTP expressed in JSON is likely to be based on

JSON Web Signatures (JWS) being developed in the IETF JOSE working group.

Revocation of TTPs needs to be supported. If the signature of a TTP has expired, the publisher needs to update the

TTP with a new signature. If a TTP is found to have drawbacks after it has been published, the document should be

revised or revoked. The announcement of TTP revision or revocation can make use of the experience of certification

revocation (e.g., certificate transparency, CRL, and etc.). An organization that publishes TTPs should maintain a list

of TTPs that are no longer supported and provide a means for TTP users to determine whether a TTP is on that list.

TTP negotiation does not introduce additional security requirements to the OF-Config or OF-Switch protocols.

Mutual authentication must be performed between Controller and Logical Switch whether or not TTP negotiation is

used. Only an authorized OFCP can configure the TTP for a Logical Switch. Integrity and replay protection for

OFConfig must be provided, just as other configuration operations. The messages used in the TTP negotiation

process should be encrypted (e.g., using security mechanisms specified for the negotiation protocol) so that attackers

cannot easily find out the TTPs supported by an OF capable switch and the negotiation results (e.g., the size of a flow

table).

OpenFlow Table Type Patterns Version No. 1.0

Page 34 of 55 © 2014 Open Networking Foundation

Appendix A Benefits of TTPs and the TTP Lifecycle

TTPs and the TTP Lifecycle were conceived to advance adoption of complex OpenFlow (that is, OpenFlow

architectures that leverage multiple flow tables), particularly on legacy ASIC-based platforms. TTPs and the TTP

Lifecycle are expected to be helpful in these ways:

 Improving and clarifying product interoperability

 Simplifying implementation of multi-table OpenFlow

 Improving switch resource utilization

 Reducing the chicken-and-egg OpenFlow adoption challenge

Each of the above benefits will be discussed in the sections below.

First, let’s revisit what a TTP is. A TTP, or “Table Type Pattern,” is a structured and detailed description of a full set of

logical switch behavior. The logical switch behavior is described in terms of familiar OpenFlow switch pipeline

elements defined in terms of the OpenFlow Switch protocol specifications. We say that the defined switch behavior is

“logical” because it is decoupled from any particular (physical) switch platform. Rather, it is defined in terms of the

OpenFlow protocol, and specifies a set of flow tables and the OpenFlow messages (flow-mods, group-mods, etc.) that

must be supported for each flow table. When products are developed in the context of a TTP, controller developers

can be confident about what a switch will support, and switch developers know which messages must be supported.

TTP switch models are useful in two distinct contexts:

 TTPs can be used as “switch profiles,” useful for developing, testing and marketing OpenFlow products

o TTP test profiles will be useful even for products with no built-in TTP awareness

 TTP awareness can be added to products for better support of multiple flow tables, e.g., strict checking of

message validity against the TTP

A.1 Improving and Clarifying Interoperability

Recent versions of the OpenFlow Switch protocol define many interesting features that can be used to develop

compelling SDN applications. But many of those features are optional, which means that applications using such

features may not work with switches even if those switches are certified as conformant to the OpenFlow switch spec.

In such a context, several difficulties arise.

 How can app architects predict which optional features will be supported in the marketplace?

o How can switch implementers prioritize which optional features to invest in?

 How will buyers determine which products can interoperate when optional features are in play?

Test profiles have frequently been discussed within the Testing and Interoperability WG as an approach to mitigate

the interoperability challenge. This interesting approach has also raised many questions, such as what the profiles

should be and who should define them, etc. The development of the TTP concept supports the profile approach by

providing a detailed method for various parties (from ONF workgroups or market participants) to precisely define

switch behavior in OpenFlow terms, including optional OpenFlow switch functionality. The precision can be used to

describe a range of breadth and depth, from individual flow-mod actions in multiple tables, to collections of flow-

mods in a single table. The upshot is that, using TTPs,

 App developers can use TTPs to describe precisely what an app needs from its switches

 Switch developers can represent, with precision, key functionality that their products offer

OpenFlow Table Type Patterns Version No. 1.0

Page 35 of 55 © 2014 Open Networking Foundation

 Testing and Interoperability WG or plugfest coordinators can define broad profiles so that interop events go

smoothly

 Product datasheets can list TTP support to clarify app/switch interoperability for buyers

A.1.1 An Interoperability Thought Experiment

Let’s imagine 50 products, 25 OpenFlow applications and 25 switch platforms. These numbers seem fairly realistic,

perhaps a bit low. Without TTPs, how would market participants know what app works with what switch? Would all

25 switches need to be tested with all 25 switches? Would the application and switch vendors be constantly wrangling

with each other who will do the testing and under what conditions? Would conformance testing play any role in such

a scenario? How would adoption proceed in this picture, where the promise of interoperability is so elusive?

On the other hand, if the 25 applications can be characterized as operating within 5 common profiles, represented by

well-known TTP descriptions, then each switch vendor can assess his own switches based on those well-known TTPs.

Conformance testing can use TTPs to verify that applications and switches operate within the “rules” of various TTPs.

Vendors can publish the TTPs they support, and customers can readily predict, with some confidence, what works

with what. Interoperability has meaning. Network operators are able to justify SDN purchases. Adoption is not far-

fetched in this picture.

A.2 Simplifying implementation of multi-table OpenFlow

Supporting a single OpenFlow flow table in a switch is fairly straightforward. In the presence of a single flow table,

flow-mod messages convey all the relevant information describing the properties of a flow, as well as all the switch-

based packet processing required for that flow. In such a situation, it is a mainstream engineering problem for a

switch software designer to analyze each flow-mod message and determine whether it can map the combination of

match fields and packet handling onto the underlying platform. This is true even when the underlying platform is a

classic ASIC or merchant silicon device. One reason this is a manageable problem is that there is no uncertainty

about the “OpenFlow pipeline” when a single flow table is used. This means that the flow-mod messages are only

conveying control information, not pipeline structure information. But in the context of multiple flow tables, this

changes.

In the traditional OpenFlow framework, mapping multiple flow tables onto classic chips (ASICs and merchant silicon)

becomes unwieldy. Interoperability testing has provided some real-world evidence of this, for example as recorded in

the Testing and Interoperability WG’s June 2013 Plugfest Technical Document. A flow-mod message no longer fully

defines a flow, nor fully defines flow handling. In addition, the switch lacks information about the effective switch

pipeline that the controller’s messages will be built on. Even when the application wants only those functions that are

within the capabilities of the switch platform, the multi-table mapping challenge is unworkable due to the complexity

of writing a general OpenFlow agent capable of handling arbitrary OpenFlow configurations. In addition, there is no

“try it and see” option; production network operators require high confidence, before deployment, that applications

(from multiple vendors) and switches (with differing platforms) will interoperate and reliably work “as advertised”. In

short, the complexity of mapping (either in the controller, or in the switch) diverse application requirements to

diverse switch capabilities is too unwieldy and non-deterministic to be practical at run time in operational networks.

But this does not need to spell doom for richly functional OpenFlow networking solutions or make such solutions

solely dependent on highly programmable devices which have yet to gain the needed traction.

OpenFlow Table Type Patterns Version No. 1.0

Page 36 of 55 © 2014 Open Networking Foundation

The remedy is the introduction of a pre-run-time “TTP compile phase” as described in the TTP Life Cycle. The TTP

Description File defines the required switch pipeline details in terms that are useful for both the application and the

switch adaptation layer. This clarity eliminates that uncertainty from the on-the-fly run-time challenge of mapping

multiple flow tables onto classic chips, so that the implementation of run-time adaptation layers is again comparable

to that of single table OpenFlow.

Initially, TTP compilation will be done by humans, but soon (say, 12 months after launching TTPs), leading vendors

can be expected to offer a fully machine-based TTP compile phase. TTP Descriptions are both human and machine

readable in order to allow both options. Compiler-generated “TTP plug-in” will be built, installed in the switch and

operational in a matter of minutes, posing no real obstacle to research or development. (Compile time is less relevant

for production networks, since they will require a “validation phase” that is orders of magnitude longer than the

compile phase.)

For correct controller / switch operation in the context of TTPs, the two endpoints must be operating in the same TTP

context. Synchronization mechanisms are defined to ensure that this is the case. For the details, see “OpenFlow

Controller / Switch NDM Synchronization” (available on the ONF website).

A.3 Improving switch resource utilization

Programmable forwarding platforms, such as servers and NPUs and “highly programmable ASICs” (similar to the

Metamorphosis abstract chip proposal) can offer flexible pipelines that are closely aligned to the OpenFlow pipeline

model. Achieving on-the-fly run-time mapping of flow-mod messages onto such platforms may be more practical

than doing so on fixed-function platforms. For these OpenFlow-like platforms, the TTP awareness is not essential for

operation, but it still offers value by improving resource utilization, enabling better performance and scalability.

Highly flexible platforms achieve their flexibility by attempting to provide resources for every legal request. But real

apps only issue some subset of what’s legal. The upshot is that for any specific real application, a highly flexible

platform is overprovisioned in one way or another, which will either impact scalability or performance or both.

Because TTPs describe the actual required switch functionality subset as well as providing for negotiation of key

scaling parameters, such as flow table sizing, they enable flexible platforms to correctly allocate resources in advance

of run time.

Consider, for example, the aforementioned Metamorphosis chip. As conceived, the device would have a large number

of smallish on-chip TCAMs that can be reconfigured in myriad ways to deliver optimal performance and scalability.

Flexible low cost devices will be very beneficial, but as discussed above, they will require optimal configuration to

deliver full value. The traditional OpenFlow framework does not provide clear mechanisms to settle the optimal

configuration issue, and the Metamorphosis paper does not address such questions. TTPs and the TTP Lifecycle can

provide the answers, and enable flexible forwarding platforms to deliver high scalability and high performance by

enabling optimizations to be made based on an analysis of the subset of functions required by a TTP.

A.4 Reducing the "Chicken-and-Egg" OpenFlow adoption challenge

OpenFlow seeks to deliver on the SDN promise of decoupling the control and data planes, and it is often said that

OpenFlow is defining an “x86 instruction set” for networking. This analogy references the Intel®-based architecture’s

role in the mainstream compute ecosystem, which allows buyers to pick best-of-breed applications, operating systems,

and system platforms from a variety of independent vendors. The analogy highlights the idea that the networking

http://conferences.sigcomm.org/sigcomm/2013/papers/sigcomm/p99.pdf

OpenFlow Table Type Patterns Version No. 1.0

Page 37 of 55 © 2014 Open Networking Foundation

market might resemble the more competitive compute ecosystem if networking platforms could converge on a single

common underlying forwarding architecture.

Unfortunately, the networking industry is in a much different context than that of the compute industry when IBM

established the de facto leading chip and operating system vendors. For various historical reasons, the networking

space is dominated by vertically integrated software and hardware; networking platforms, even from specific vendors,

are based on a wide variety of silicon architectures. Many vendors view diverse silicon as helpful for differentiation in

the market place and see no advantage in pushing for a common silicon architecture. A set of compelling SDN “killer

apps” that leverage OpenFlow-enabled hardware would alter the equation, enticing vendors to deliver platforms that

can support those apps. But how do the app developers make progress in the absence of predictable platform

capabilities?

In the early phase of open SDN adoption, most customers and vendors prefer taking advantage of hybrid switching

platforms. Although hybrid platforms are often denigrated by SDN purists, they support an important transition

process that allows both sides to explore SDN with incremental investment and modest risk. Hybrid platforms only

require incremental investment because they are based on legacy silicon, but they come with the “diverse silicon”

baggage. Unfortunately, as described above, traditional OpenFlow only works well on legacy fixed-function silicon

when single flow tables are used. Complex OpenFlow applications can be delivered on flexible silicon, but adoption of

such silicon is limited, in part because of cost and performance trade-offs.

At first glance, it would appear that open SDN advocates are facing a classic chicken-and-egg situation. App

development is waiting for open, standard and (ideally) flexible platforms. Platform providers seem hesitant to invest

in such platforms (and the current interoperability challenges of OpenFlow may be contributing to that hesitation).

In the face of hesitant system vendors, silicon vendors are under-investing in potentially compelling chip

architectures. How do we change this chicken-and-egg dynamic?

TTPs can be part of the answer. A key motivator for the development of TTPs was the recognition that the SDN

hardware market faced a “bootstrap” challenge, since open SDN adoption requires big investment, but faces big

uncertainty when complex forwarding meets diverse platform architecture. TTPs break the cycle by allowing market

participants (large network operators, system vendors, testing houses and ONF workgroups) to define shared “switch

models” (TTPs) that provide a pathway around the “complex forwarding / diverse platform” obstacle.

The advent of TTPs will enable rich OpenFlow functionality on legacy silicon. As useful TTPs become available and

open SDN vendors recognize the opportunity to bridge the complexity/interoperability gap, the chicken-and-egg

problem will be resolved. App developers will be able to develop and deliver interesting applications with being stuck

waiting for new platforms. As a diversity of new SDN applications gains traction, system and silicon vendors will have

more clarity about where the future opportunities will lie, and will seek to offer more flexible products that can

support more TTPs. This market pressure will help drive the adoption of the flexible networking silicon which is

currently stalled in the absence of a transition story.

A.5 In Summary

TTPs can help us move from our current restrictive ecosystem to a richer, more competitive ecosystem. They improve

interoperability in the face of diverse platforms and diverse applications. They help buyers and other market

participants understand what will interoperate with what. They allow for complex OpenFlow applications to run on

legacy fixed-function platforms. They also allow for optimization of performance and scaling when applications run

on flexible platforms.

OpenFlow Table Type Patterns Version No. 1.0

Page 38 of 55 © 2014 Open Networking Foundation

Appendix B TTP Implementation Considerations

B.1 Introduction

When a TTP is used to define the datapath model for an OpenFlow Logical Switch there are some adjustments that

should be made in the processing of OpenFlow protocol messages. These adjustments derive from the fact that the

TTP defines the set of flow tables and the types of entries these tables may contain, and may include built-in table

entries that must exist when the Logical Switch is initialized. The adjustments include:

 Changes in support for the TABLE_FEATURES message (B.2)

 Changes in handling FLOW_MOD messages (B.3)

 Changes in handling GROUP_MOD messages (B.4)

These adjustments are described in the following sections. Finally section B.5 presents some ideas about OpenFlow

extensions that can enable better TTP support.

B.2 Support for TABLE_FEATURES message

The TABLE_FEATURES message response provides less detail than a TTP. Under normal circumstances, when a

switch has an active TTP its controller should support that TTP and thus be aware of the TTP details. In that context,

the value of TABLE_FEATURES query support is dubious. However, there may be situations where passive

“readonly” controllers seek to gather information from the switch, and in such use cases, TABLE_FEATURES might

be useful. The specific TABLE_FEATURES response can be developed by hand or by machine based on a TTP and its

parameters. There has been some discussion about developing a tool for producing TTP-related content such as

TABLE_FEATURES information. Check with the ONF to see if such a tool is available. The following modifications

are made to OpenFlow TABLE_FEATURES message processing:

 If a TTP has been agreed with the controller, writing TABLE-FEATURES is not permitted and the OpenFlow

Logical Switch (OFLS) should return an error of type OFPET_TABLE_FEATURES_FAILED and code

OFPTFFC_EPERM.

 If a TTP has been configured in an OFLS, reading TABLE-FEATURES should be supported, but support is

not required. If reading table features is not supported a TABLE_FEATURES query should result in an error

response of type OFPET_BAD_REQUEST and code OFPBRC_BAD_MULTIPART or a new code defined

specifically for this case (e.g., Table features defined by TTP).

B.3 Support for FLOW_MOD messages

Since a TTP defines valid flow table entry types and may define built-in flow table entries, the following adjustments

to OFPT_FLOW_MOD message processing are made:

 If an OFPFC_ADD or other OFPFC_* command indicates a table number that is not specified in the TTP an

error of type OFPET_FLOW_MOD_FAILED must be returned with code OFPFMFC_BAD_TABLE_ID or a

new code defined specifically for this case (i.e., Bad table number for TTP).

OpenFlow Table Type Patterns Version No. 1.0

Page 39 of 55 © 2014 Open Networking Foundation

 If an OFPFC_ADD command specifies a flow table entry that does not conform to one of the flow_mod entry

types defined in the TTP for the indicated flow table, an error may be returned of type

OFPET_FLOW_MOD_FAILED and code OFPFMFC_EPERM or a new code defined specifically for this case

(i.e., Flow entry invalid for TTP specified table).

o If the TTP defines a flow_mod type containing a match field with "const_mask" and "const_value"

members, checking conformance includes verifying that the mask supplied for the field is the

logical 'or' of the "const_mask" and "mask" and the match value includes the corresponding

"const_value" bit values.

o If a flow_mod type has a field with match type "prefix" the mask must be a set of contiguous bits

beginning at the most significant bit and the priority must be the length of the prefix mask. If the

priority is zero (not specified) then the priority can be adjusted to the correct value.

 An OFPFC_MODIFY should check all matching entries to ensure that the resulting entries are all legal

before changing any of the entries. That is, if the last entry modified is illegal, the command must fail

without any side effects, so the earlier entries should not have been changed. If an OFPFC_MODIFY or

OFPFC_MODIFY_STRICT command would result in a non-conforming flow table entry, an error may be

returned of type OFPET_FLOW_MOD_FAILED and code OFPFMFC_EPERM or a new code defined

specifically for this case (i.e., Flow entry invalid for specified table). In this case it may be helpful to return

an indication of which flow table entry caused the error, but this may require a protocol extension.

o Note: Since OFPFC_MODIFY is “loose” it differs from other commands in that it cannot be easily

checked for TTP compliance except by looking at the resulting entries. That makes it data

dependent. Controller/app implementers should consequently use the loose version of MODIFY

with some caution.

 If an OFPFC_ADD, OFPFC_MODIFY_STRICT or OFPFC_DELETE_STRICT command matches a built-in

flow table entry defined in the TTP, an error must be returned of type OFPET_FLOW_MOD_FAILED and

code OFPFMFC_EPERM or a new code defined specifically for this case (i.e., Cannot modify or delete a TTP

builtin flow entry).

o There is one exception to this rule: If an OFPFC_ADD or OFPFC_MODIFY_STRICT request

matches a built-in entry and either contains no instructions or exactly matches the built-in, the

cookie value is used to replace the cookie value in the built-in flow table entry. No other changes

are made and a success response is returned.

 If an OFPFC_MODIFY or OFPFC_DELETE command matches a built-in flow table entry the request is

ignored for that entry, but this does not affect the response returned. That is, the response returned is

determined based only on the other (non-built-in) flow table entries matched.

B.4 Support for GROUP_MOD messages

Since a TTP defines valid group table entry types, the following adjustments to OFPT_GROUP_MOD message

processing are made:

 Group entries should match one of the group entry types defined in the TTP, i.e., have matching group type

and each bucket matching a bucket type defined for the group entry type. If an OFPGC_ADD command

specifies a group table entry that does not conform to one of the group entry types defined in the TTP an

error may be returned of type OFPET_GROUP_MOD_FAILED and code OFPGMFC_INVALID_GROUP or

a new code defined specifically for this case (i.e., Group entry invalid for TTP).

 If an OFPGC_ADD command specifies a group table entry that conforms to one of the group entry types but

one of the buckets does not conform to an associated bucket type defined for that group entry type in the

OpenFlow Table Type Patterns Version No. 1.0

Page 40 of 55 © 2014 Open Networking Foundation

TTP, an error may be returned of type OFPET_GROUP_MOD_FAILED and code

OFPGMFC_BAD_BUCKET or a new code defined specifically for this case (i.e., Group bucket invalid for

TTP).

 If an OFPGC_MODIFY command specifies a bucket that does not conform to an associated bucket type

defined for an associated group entry type in the TTP, an error may be returned of type

OFPET_GROUP_MOD_FAILED and code OFPGMFC_BAD_BUCKET or a new code defined specifically for

this case (i.e., Group bucket invalid for TTP).

B.5 Potentially useful OF-Switch extensions for TTPs

A TTP can constrain the types of flow_mod and group_mod messages that are valid for an OpenFlow Logical Switch .

In addition, message validity can be verified in debug mode, for example as indicated by the adjustments to message

processing cited above. Debug mode (strict checking for message validity according to the TTP) can require pattern

matching to determine whether or not a given message matches a type specified in the TTP. This process could be

made simpler (more efficient) for the Logical Switch by including the flow_mod type name, built-in flow_mod name,

or group entry type name and bucket type name in the message, reducing the range of possibilities that must be

considered in validating the message.

Adding error codes specific to TTP validation checks can provide more accurate indications of the source of some

errors (e.g., as noted in sections above).

OpenFlow Table Type Patterns Version No. 1.0

Page 41 of 55 © 2014 Open Networking Foundation

Appendix C Example TTP Description: L2-L3-ACLs

The following is an example TTP (from which the examples in the TTP description in section 3 have been drawn).

This TTP describes OpenFlow controllable behavior, based on the OF-Switch 1.3 protocol, for a switch that provides

both MAC forwarding (both unicast and multicast) and IP forwarding (unicast only). The example conforms to

common standards and practices for MAC Bridging and IP forwarding so that the behavior described is well-known,

allowing the reader to focus on how this behavior can be expressed in a TTP. Figure 2 is a diagram of the TTP

showing the flow tables and group entry types and their relationships.

Figure 2: L2-L3-ACLs TTP Diagram

{

 "NDM_metadata": {

 "authority": "org.opennetworking.fawg",

 "type": "TTPv1",

 "name": "L2-L3-ACLs",

 "version": "1.0.0",

 "OF_protocol_version": "1.3.3",

 "doc": ["Example of a TTP supporting L2 (unicast, multicast, flooding), L3 (unicast only),",

 "and an ACL table."]

 },

 "security": {

 "doc": ["This TTP is not published for use by ONF. It is an example and for",

 "illustrative purposes only.",

 "If this TTP were published for use it would include",

 "guidance as to any security considerations in this doc member."]

 },

 "table_map": {

 "ControlFrame": 0,

 "IngressVLAN": 10,

 "MacLearning": 20,

 "ACL": 30,

 "L2": 40,

 "ProtoFilter": 50,

 "IPv4": 60,

 "IPv6": 80

 },

Flow Tables Group Table

Protocol
Filter

IPv4

IPv6

L2

L3ECMP
Entries

Egress
Port

Entries
L2 Mcast

Entries

Ingress
VID

Flood
Entries

TTL Exception

ARP/ND Exception

Next Hop
Entries

ACL
Control2

Frame

To Controller1

MAC
Learning

IN_PORT
VLAN_VID
ETH_SRC

IN_PORT
VLAN_VID

ETH_DST
ETH_TYPE

*
VLAN_VID
ETH_DST

ETH_TYPE
ETH_DST

IPV4_DST

IPV6_DST

1Traffic to controller is metered
2Control Frame table not merged with ACL table because Ingress VID table
would add VLAN to control frames that are not associated with a VID

SELECT

ALL

ALL

INDIRECT

ARP

INDIRECT
FF (opt)

OpenFlow Table Type Patterns Version No. 1.0

Page 42 of 55 © 2014 Open Networking Foundation

 "identifiers": [

 {"var": "<port_vid>",

 "doc": "A VLAN ID to be assigned to untagged or priority tagged frames received on a port."},

 {"var": "<local_vid>",

 "range": "1..4094",

 "doc": "A VLAN ID valid on the wire at a port."},

 {"var": "<relay_vid>",

 "doc": "A VLAN ID valid internal to the switch."},

 {"var": "<VID>",

 "doc": "A VLAN ID"},

 {"var": "<Router_MAC_DA>",

 "doc": "A unicast MAC address used to reach the L3 flow tables"},

 {"var": "<Group_MAC>",

 "doc": "A group (multicast) MAC address."},

 {"var": "<Router_IP>",

 "doc": ["An IP address used to reach L3 control functions,",

 "e.g. a loopback address in the Router."]}, {"var": "<LocalSubnet>",

 "doc": "An IP subnet (address prefix) allocated to a directly attached L2 network or link."},

 {"var": "<port_no>",

 "doc": "A valid port number on the logical switch."},

 {"var": "<local_MAC>",

 "doc": "The unicast MAC address of a Router port on which a new L2 frame is transmitted."},

 {"var": "<dest_MAC>",

 "doc": "The destination MAC address for a new L2 frame."},

 {"var": "<subnet_VID>",

 "doc": "The VLAN ID of a locally attached L2 subnet on a Router."},

 {"var": "<<group_entry_types:name>>",

 "doc": ["An OpenFlow group identifier (integer) identifying a group table entry",

 "of the type indicated by the variable name"]}

],

 "features": [

 {"feature": "ext187",

 "doc": "Flow entry notification Extension – notification of changes in flow entries"},

 {"feature": "ext235",

 "doc": "Group notifications Extension – notification of changes in group or meter entries"}

],

 "meter_table": {

 "meter_types": [

 {"name": "ControllerMeterType",

 "bands": [{"type": "DROP", "rate": "1000..10000", "burst": "50..200"}]

 },

 {"name": "TrafficMeter",

 "bands": [{"type": "DSCP_REMARK", "rate": "10000..500000", "burst": "50..500"},

 {"type": "DROP", "rate": "10000..500000", "burst": "50..500"}]

 }

],

 "built_in_meters": [

 {"name": "ControllerMeter", "meter_id": 1,

 "type": "ControllerMeterType", "bands": [{"rate": 2000, "burst": 75}]},

 {"name": "AllArpMeter", "meter_id": 2,

 "type": "ControllerMeterType", "bands": [{"rate": 1000, "burst": 50}]}

]

 },

 "flow_tables": [

 {

 "name": "ControlFrame",

 "doc": ["Filters L2 control reserved destination addresses and",

 "may forward control packets to the controller.",

 "Directs all other packets to the Ingress VLAN table."],

 "flow_mod_types": [

 {

 "name": "Frame-To-Controller",

 "doc": ["This match/action pair allows for flow_mods that match on either",

 "ETH_TYPE or ETH_DST (or both) and send the packet to the",

 "controller, subject to metering."],

 "match_set": [

 {"field": "ETH_TYPE", "match_type": "all_or_exact"},

OpenFlow Table Type Patterns Version No. 1.0

Page 43 of 55 © 2014 Open Networking Foundation

 {"field": "ETH_DST", "match_type": "exact"}

],

 "instruction_set": {"exactly_one": [

 [

 {"instruction": "METER", "meter_name": "ControllerMeter",

 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",

 "sent to the controller"]},

 {"instruction": "APPLY_ACTIONS",

 "actions": [{"action": "OUTPUT", "port": "CONTROLLER"}]

 }],

 [

 {"instruction": "APPLY_ACTIONS",

 "actions": [{"action": "OUTPUT", "port": "CONTROLLER"}]

 }]

]}

 }

],

 "built_in_flow_mods": [

 {

 "name": "Control-Frame-Filter",

 "doc": "Mandatory filtering of control frames with C-VLAN Bridge reserved DA.",

 "priority": 1,

 "match_set": [{"field":"ETH_DST","mask":"0xfffffffffff0","value":"0x0180C2000000"}],

 "instruction_set": []

 },

 {

 "name": "Non-Control-Frame",

 "doc": "Mandatory miss flow_mod, sends packets to IngressVLAN table.",

 "priority": 0,

 "match_set": [],

 "instruction_set": [{"instruction": "GOTO_TABLE", "table": "IngressVLAN"}]

 }

]

 },

 {

 "name": "IngressVLAN",

 "doc": ["Ingress VID processing table, including:",

 " - accepting or blocking untagged and priority tagged frames",

 " - accepting or blocking VLAN tagged frames",

 " - ingress VID filtering control",

 " - (optional) ingress VID translation"],

 "flow_mod_types": [

 {"all": [

 {

 "name": "Block-Untagged",

 "priority": "2..3",

 "doc": "Block untagged traffic on a port or all ports.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_NONE"}

],

 "instruction_set": [

 {"instruction": "CLEAR_ACTIONS"}

]

 },

 {

 "name": "Allow-Untagged",

 "priority": 3,

 "doc": "Allow untagged traffic.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "exact"},

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_NONE"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "PUSH_VLAN"},

 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<port_vid>"}]},

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 },

OpenFlow Table Type Patterns Version No. 1.0

Page 44 of 55 © 2014 Open Networking Foundation

 {

 "name": "Block-Priority-Tagged",

 "priority": "5..7",

 "doc": "Block priority tagged traffic on a port or all ports.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

 {"instruction": "CLEAR_ACTIONS"}

]

 },

 {

 "name": "Allow-Priority-Tagged",

 "priority": "6..7",

 "doc": "Allow priority tagged traffic on a port or all ports.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<port_vid>"}]},

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 }

],

 "zero_or_more": [

 {

 "name": "Enable-Ingress-VID-Filter",

 "priority": "2..3",

 "doc": "Used to enable ingress VID filtering on all ports or a specific port.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "mask": "0x1000", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

 {"instruction": "CLEAR_ACTIONS"}

]

 },

 {

 "name": "Disable-Ingress-VID-Filter",

 "priority": 3,

 "doc": "Used to disable ingress VID filtering on a specific port.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "exact"},

 {"field": "VLAN_VID", "mask": "0x1000", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 },

 {

 "name": "Ingress-VID-Allow",

 "priority": 4,

 "doc": "Used to allow a specific VID to ingress at a port or all ports.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "const_mask": "0xf000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<local_vid>"}

],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 },

 {

 "opt_tag": "VID-X",

 "name": "Ingress-VID-Translate",

 "priority": "4..5",

OpenFlow Table Type Patterns Version No. 1.0

Page 45 of 55 © 2014 Open Networking Foundation

 "doc": "Used to translate specific VIDs at ingress at a port or all ports.",

 "match_set": [

 {"field": "IN_PORT", "match_type": "all_or_exact"},

 {"field": "VLAN_VID", "const_mask": "0xf000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<local_vid>"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<relay_vid>"}]},

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 }

]}

],

 "built_in_flow_mods": [

 {

 "name": "Default-Allow-Untagged",

 "priority": 1,

 "doc": "Default to allow untagged traffic on all ports, default port VID is 1.",

 "match_set": [

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_NONE"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "PUSH_VLAN"},

 {"action": "SET_FIELD", "field": "VLAN_VID", "value": 1}]},

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 },

 {

 "name": "Default-Allow-Priority-Tagged",

 "priority": 4,

 "doc": ["Default flow_mod to allow priority tagged traffic on all ports,",

 "default port VID is 1."],

 "match_set": [

 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "SET_FIELD", "field": "VLAN_VID", "value": 1}]},

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 },

 {

 "name": "Default-Disable-Ingress-VID-Filter",

 "priority": 1,

 "doc": "Default to disable ingress VID filtering on all ports.",

 "match_set": [

 {"field": "VLAN_VID", "mask": "0x1000", "value": "OFPVID_PRESENT"}

],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "MacLearning"}

]

 }

],

 "table_subsets": [

 {"name": "IV-pass",

 "subset": ["Allow-Untagged", "Allow-Priority-Tagged", "Disable-Ingress-VID-Filter",

 "Ingress-VID-Allow", "Ingress-VID-Filter", "Ingress-VID-Translate",

 "Default-Allow-Untagged", "Default-Allow-Priority-Tagged",

 "Default-Disable-Ingress-VID-Filter"]

 },

 {"name": "IV-drop",

 "subset": ["Block-Untagged", "Block-Priority-Tagged", "Enable-Ingress-VID-Filter",

 "MISS"]

 }

]

 },

OpenFlow Table Type Patterns Version No. 1.0

Page 46 of 55 © 2014 Open Networking Foundation

 {

 "name": "MacLearning",

 "doc": ["By default sends packets whose Source MAC address is ",

 "received on a new IN_PORT to controller for learning.",

 "The controller is expected to install flow_mods for learned",

 "addresses, and remove stale entries when required.",

 "The controller may also disable MAC learning for a VLAN ",

 "by installing a flow_mod to simply go to the next table."],

 "flow_mod_types": [

 {

 "name": "Known-MAC",

 "priority": 2,

 "doc": "Type used to create an entry for a learned MAC",

 "match_set": [

 {"field": "IN_PORT"},

 {"field": "VLAN_VID"},

 {"field": "ETH_SRC"}

],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "ACL"}

]

 },

 {

 "name": "Disable-MAC-Learning",

 "priority": 2,

 "doc": "Type used to disable MAC learning on a VLAN",

 "match_set": [{"field": "VLAN_VID"}],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "ACL"}

]

 },

 {

 "name": "MAC-Miss-limit",

 "doc": "Send unknown MACs to the controller, subject to metering.",

 "priority": 1,

 "match_set": [],

 "instruction_set": [

 {"instruction": "METER", "meter_name": "ControllerMeter",

 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",

 "sent to the controller"]},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}

]

 },

 {"instruction": "GOTO_TABLE", "table": "ACL"}

]

 }

],

 "built_in_flow_mods": [

 {

 "name": "MAC-Miss",

 "doc": "Send unknown MACs to the controller.",

 "priority": 0,

 "match_set": [],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}

]

 },

 {"instruction": "GOTO_TABLE", "table": "ACL"}

]

 }

]

 },

 {

 "name": "ACL",

 "doc": "Simple 5-tuple firewalling ACL table.",

 "flow_mod_types": [

 {

OpenFlow Table Type Patterns Version No. 1.0

Page 47 of 55 © 2014 Open Networking Foundation

 "name": "IP5-Tuple-Block",

 "doc": ["This type allows matching on an IP 5-tuple and",

 "dropping packets."],

 "match_set": [{

 "exactly_one": [

 [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "IP_PROTO", "value": 6},

 {"field": "IPV4_SRC", "match_type": "mask"},

 {"field": "IPV4_DST", "match_type": "mask"},

 {"field": "TCP_SRC", "match_type": "mask"},

 {"field": "TCP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "IP_PROTO", "value": 17},

 {"field": "IPV4_SRC", "match_type": "mask"},

 {"field": "IPV4_DST", "match_type": "mask"},

 {"field": "UDP_SRC", "match_type": "mask"},

 {"field": "UDP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "IP_PROTO", "value": 6},

 {"field": "IPV6_SRC", "match_type": "mask"},

 {"field": "IPV6_DST", "match_type": "mask"},

 {"field": "TCP_SRC", "match_type": "mask"},

 {"field": "TCP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "IP_PROTO", "value": 17},

 {"field": "IPV6_SRC", "match_type": "mask"},

 {"field": "IPV6_DST", "match_type": "mask"},

 {"field": "UDP_SRC", "match_type": "mask"},

 {"field": "UDP_DST", "match_type": "mask"}

]

]

 }],

 "instruction_set": [

 {"instruction": "CLEAR_ACTIONS"}

]

 },

 {

 "name": "IP-5Tuple-Intercept",

 "doc": ["This type allows matching on an IP 5-tuple and",

 "forwarding to the controller."],

 "match_set": [{

 "exactly_one": [

 [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "IP_PROTO", "value": 6},

 {"field": "IPV4_SRC", "match_type": "mask"},

 {"field": "IPV4_DST", "match_type": "mask"},

 {"field": "TCP_SRC", "match_type": "mask"},

 {"field": "TCP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "IP_PROTO", "value": 17},

 {"field": "IPV4_SRC", "match_type": "mask"},

 {"field": "IPV4_DST", "match_type": "mask"},

 {"field": "UDP_SRC", "match_type": "mask"},

 {"field": "UDP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "IP_PROTO", "value": 6},

 {"field": "IPV6_SRC", "match_type": "mask"},

 {"field": "IPV6_DST", "match_type": "mask"},

 {"field": "TCP_SRC", "match_type": "mask"},

OpenFlow Table Type Patterns Version No. 1.0

Page 48 of 55 © 2014 Open Networking Foundation

 {"field": "TCP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "IP_PROTO", "value": 17},

 {"field": "IPV6_SRC", "match_type": "mask"},

 {"field": "IPV6_DST", "match_type": "mask"},

 {"field": "UDP_SRC", "match_type": "mask"},

 {"field": "UDP_DST", "match_type": "mask"}

]

]

 }],

 "instruction_set": [

 {"instruction": "METER", "meter_name": "ControllerMeter",

 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",

 "sent to the controller"]},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}]

 }

]

 },

 {

 "name": "IP-5Tuple-Allow",

 "doc": ["This type allows matching on an IP 5-tuple and",

 "sending on to the L2 table, overriding a lower",

 "priority block or intercept."],

 "match_set": [{

 "exactly_one": [

 [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "IP_PROTO", "value": 6},

 {"field": "IPV4_SRC", "match_type": "mask"},

 {"field": "IPV4_DST", "match_type": "mask"},

 {"field": "TCP_SRC", "match_type": "mask"},

 {"field": "TCP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "IP_PROTO", "value": 17},

 {"field": "IPV4_SRC", "match_type": "mask"},

 {"field": "IPV4_DST", "match_type": "mask"},

 {"field": "UDP_SRC", "match_type": "mask"},

 {"field": "UDP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "IP_PROTO", "value": 6},

 {"field": "IPV6_SRC", "match_type": "mask"},

 {"field": "IPV6_DST", "match_type": "mask"},

 {"field": "TCP_SRC", "match_type": "mask"},

 {"field": "TCP_DST", "match_type": "mask"}

],

 [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "IP_PROTO", "value": 17},

 {"field": "IPV6_SRC", "match_type": "mask"},

 {"field": "IPV6_DST", "match_type": "mask"},

 {"field": "UDP_SRC", "match_type": "mask"},

 {"field": "UDP_DST", "match_type": "mask"}

]

]

 }],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "L2"}

]

 }

],

 "built_in_flow_mods": [

 {

 "name": "ACL-skip",

OpenFlow Table Type Patterns Version No. 1.0

Page 49 of 55 © 2014 Open Networking Foundation

 "doc": "Mandatory miss flow mod, sends packets to L2 table.",

 "priority": 0,

 "match_set": [],

 "instruction_set": [{"instruction": "GOTO_TABLE", "table": "L2"}]

 }

]

 },

 {

 "name": "L2",

 "doc": ["MAC forwarding table"],

 "flow_mod_types": [

 {

 "name": "VID-flood",

 "priority": 1,

 "doc": "Flood frames with unknown DA.",

 "match_set": [

 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<VID>"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<VIDflood>"}

]

 },

 {"zero_or_one": {"instruction": "GOTO_TABLE", "table": "ProtoFilter",

 "doc": "Include this instruction of the VID is registered on the Router port."}}

]

 },

 {

 "name": "L2-Unicast",

 "priority": 2,

 "doc": "Unicast forwarding entry.",

 "match_set": [

 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<VID>"},

 {"field": "ETH_DST"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<EgressPort>"}

]

 }

]

 },

 {

 "name": "L2-Router-MAC",

 "priority": 2,

 "doc": "Router MAC address, so send toward IP flow tables.",

 "match_set": [

 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<VID>"},

 {"field": "ETH_DST", "value": "<Router_MAC_DA>"}

],

 "instruction_set": [

 {"instruction": "GOTO_TABLE", "table": "ProtoFilter"}

]

 },

 {

 "name": "L2-Multicast",

 "priority": 2,

 "doc": "L2 Multicast forwarding entry.",

 "match_set": [

 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",

 "mask": "0x0fff", "value": "<VID>"},

 {"field": "ETH_DST", "value": "<Group_MAC>"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

OpenFlow Table Type Patterns Version No. 1.0

Page 50 of 55 © 2014 Open Networking Foundation

 {"action": "GROUP", "group_id": "<L2Mcast>"}

]

 }

]

 }

],

 "built_in_flow_mods": [

 {

 "name": "L2-Drop",

 "priority": 0,

 "doc": ["Discard frames with no VID registration,",

 "i.e., VID without a <VIDflood> group and",

 "corresponding VIDflood flow table entry."],

 "match_set": [],

 "instruction_set": [

 {"instruction": "CLEAR_ACTIONS"}

]

 }

],

 "table_subsets": [

 {"name": "L2-Forward",

 "subsets": ["VIDflood", "L2Unicast", "L2Multicast"]

 }

]

 },

 {

 "name": "ProtoFilter",

 "doc": ["Selects IP version flow table and forwards ARPs to controller."],

 "built_in_flow_mods": [

 {

 "name": "IPv4",

 "priority": 1,

 "doc": "Direct IPv4 packets to IPv4 flow table.",

 "match_set": [

 {"field": "ETH_TYPE", "value": 2048},

 {"field": "ETH_DST", "value": "<Router_MAC_DA>"}

],

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "GOTO_TABLE", "table": "IPv4"}

]

 },

 {

 "opt_tag": "IPv6",

 "name": "IPv6",

 "priority": 1,

 "doc": "Direct IPv6 packets to IPv6 flow table.",

 "match_set": [

 {"field": "ETH_TYPE", "value": 34525},

 {"field": "ETH_DST", "value": "<Router_MAC_DA>"}

],

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "GOTO_TABLE", "table": "IPv6"}

]

 },

 {

 "name": "Router-ARP",

 "priority": 2,

 "doc": "Direct targeted ARP packets to controller.",

 "match_set": [

 {"field": "ETH_TYPE", "value": 2054},

 {"field": "ARP_TPA", "value": "<Router_IP>"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}]

 }

]

 },

OpenFlow Table Type Patterns Version No. 1.0

Page 51 of 55 © 2014 Open Networking Foundation

 {

 "name": "All-ARP",

 "priority": 1,

 "doc": "Direct ARP packets to controller.",

 "match_set": [

 {"field": "ETH_TYPE", "value": 2054}

],

 "instruction_set": [

 {"instruction": "METER", "meter_name": "AllArpMeter",

 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",

 "sent to the controller. A separate controller meter is used",

 "here, with a lower rate than main controller meter, to limit ARPs",

 "before limiting other packets to the controller."]},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}]

 }

]

 }

]

 },

 {

 "name": "IPv4",

 "doc": ["IPv4 unicast forwarding table. To achieve LPM the flow_mod",

 "priority must be the length of the prefix mask."],

 "flow_mod_types": [

 {

 "name": "v4-Unicast",

 "doc": ["LPM forwarding entry. Valid only if the priority value",

 "matches the length of the prefix mask."],

 "match_set": [

 {"field": "IPV4_DST", "match_type": "prefix"}

],

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<NextHop>"}]

 }

]

 },

 {

 "name": "v4-Unicast-ECMP",

 "doc": ["LPM forwarding entry with ECMP. Valid only if the priority value",

 "matches the length of the prefix mask."],

 "match_set": [

 {"field": "IPV4_DST", "match_type": "prefix"}

],

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<L3ECMP>"}]

 }

]

 },

 {

 "name": "Local-ARP",

 "doc": ["Local subnet address needing ARP. Valid only if the priority value",

 "matches the length of the prefix mask."],

 "match_set": [

 {"field": "IPV4_DST", "value": "<LocalSubnet>", "match_type": "prefix"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}]

 }

]

 }

]

OpenFlow Table Type Patterns Version No. 1.0

Page 52 of 55 © 2014 Open Networking Foundation

 },

 {

 "opt_tag": "IPv6",

 "name": "IPv6",

 "doc": ["IPv6 unicast forwarding table. To achieve LPM the flow_mod",

 "priority must be the length of the prefix mask."],

 "flow_mod_types": [

 {

 "name": "v6-Unicast",

 "doc": ["LPM forwarding entry. Valid only if the priority value",

 "matches the length of the prefix mask."],

 "match_set": [

 {"field": "IPV6_DST", "match_type": "prefix"}

],

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<NextHop>"}]

 }

]

 },

 {

 "name": "v6-Unicast-ECMP",

 "doc": ["LPM forwarding entry with ECMP. Valid only if the priority value",

 "matches the length of the prefix mask."],

 "match_set": [

 {"field": "IPV6_DST", "match_type": "prefix"}

],

 "instruction_set": [

 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "GROUP", "group_id": "<L3ECMP>"}]

 }

]

 },

 {

 "name": "Local-ND",

 "doc": ["Local subnet address needing Neighbor Discovery. Valid only",

 "if the priority value matches the length of the prefix mask."],

 "match_set": [

 {"field": "IPV6_DST", "value": "<LocalSubnet>", "match_type": "prefix"}

],

 "instruction_set": [

 {"instruction": "APPLY_ACTIONS",

 "actions": [

 {"action": "OUTPUT", "port": "CONTROLLER"}]

 }]

 }

]

 }

],

 "group_entry_types": [

 {

 "name": "EgressPort",

 "doc": ["Output to a port, removing VLAN tag if needed.",

 "Entry per port, plus entry per untagged VID per port."],

 "group_type": "INDIRECT",

 "bucket_types": [

 {"name": "OutputTagged",

 "action_set": [{"action": "OUTPUT", "port": "<port_no>"}]

 },

 {"name": "OutputUntagged",

 "action_set": [{"action": "POP_VLAN"},

 {"action": "OUTPUT", "port": "<port_no>" }]

 },

 {"opt_tag": "VID-X",

 "name": "OutputVIDTranslate",

 "action_set": [{"action": "SET_FIELD", "field": "VLAN_VID", "value": "<local_vid>"},

OpenFlow Table Type Patterns Version No. 1.0

Page 53 of 55 © 2014 Open Networking Foundation

 {"action": "OUTPUT", "port": "<port_no>" }]

 }

]

 },

 {

 "name": "VIDflood",

 "doc": ["Output to all ports registered for a VID (except IN_PORT).",

 "Entry per VID."],

 "group_type": "ALL",

 "bucket_types": [

 {"name": "VIDport",

 "action_set": [{"action": "GROUP", "group_id": "<EgressPort>"}]

 }

]

 },

 {

 "name": "L2Mcast",

 "doc": ["Output to all ports in a multicast tree (except IN_PORT).",

 "Entry per L2 group address."],

 "group_type": "ALL",

 "bucket_types": [

 {"name": "MCASTport",

 "action_set": [{"action": "GROUP", "group_id": "<EgressPort>"}]

 }

]

 },

 {

 "name": "NextHop",

 "doc": ["Decrement IP TTL and add L2 header for next hop.",

 "Entry per next hop IP address."],

 "group_type": "INDIRECT",

 "bucket_types": [

 {"name": "KnownMAC",

 "action_set": [

 {"action": "DEC_NW_TTL"},

 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},

 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},

 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},

 {"action": "GROUP", "group_id": "<EgressPort>"}]

 },

 {"name": "UnknownMAC",

 "action_set": [

 {"action": "DEC_NW_TTL"},

 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},

 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},

 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},

 {"action": "GROUP", "group_id": "<Flood>"}]

 }

]

 },

 {

 "name": "L3ECMP",

 "doc": ["Output to one port in an ECMP set.",

 "Entry per destination border node."],

 "group_type": "SELECT",

 "bucket_types": [

 {"name": "nextHopOption",

 "action_set": [{"action": "GROUP", "group_id": "<NextHop>"}]

 }

]

 },

 {"zero_or_more": {

 "name": "NextHopFF",

 "doc": ["Decrement IP TTL and add L2 header for next hop.",

 "Entry per next hop IP address.",

 "Fast Failover allows multiple buckets, picks first operational."],

 "group_type": "FF",

 "bucket_types": [

 {"name": "KnownMAC",

 "action_set": [

 {"action": "DEC_NW_TTL"},

OpenFlow Table Type Patterns Version No. 1.0

Page 54 of 55 © 2014 Open Networking Foundation

 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},

 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},

 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},

 {"action": "GROUP", "group_id": "<EgressPort>"}]

 },

 {"name": "UnknownMAC",

 "action_set": [

 {"action": "DEC_NW_TTL"},

 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},

 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},

 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},

 {"action": "GROUP", "group_id": "<Flood>"}]

 }

]

 }}

],

 "parameters": [

 {"name": "ACL::TableSize", "type": "integer"},

 {"name": "L2::TableSize", "type": "integer"},

 {"name": "IPv4::TableSize", "type": "integer"},

 {"name": "IPv6::TableSize", "type": "integer"},

 {"name": "Meter::TableSize", "type": "integer",

 "doc": "Number of meters that can be configured in the switch."},

 {"name": "Meter::Accuracy", "type": "integer",

 "doc": "Accuracy of meters on the switch."},

 {"name": "OptFunc", "type": "array of opt_tag values",

 "doc": "Support for optional functions can be negotiated using the OptFunc parameter."}

],

 "flow_paths": [

 {"doc": ["This object contains just a few examples of flow paths, it is not",

 "a comprehensive list of the flow paths required for this TTP. It is",

 "intended that the flow paths array could include either a list of",

 "required flow paths or a list of specific flow paths that are not",

 "required (whichever is more concise or more useful."],

 "name": "L2-2",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Unicast",

 "EgressPort"]

 },

 {"name": "L2-3",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Multicast",

 "L2Mcast", ["EgressPort"]]

 },

 {"name": "L2-4",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACL-skip","VID-flood",

 "VIDflood", ["EgressPort"]]

 },

 {"name": "L2-5",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Drop"]

 },

 {"name": "v4-1",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Router-MAC",

 "IPv4","v4-Unicast",

 "NextHop", "EgressPort"]

 },

 {"name": "v4-2",

 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Router-MAC",

 "IPv4","v4-Unicast-ECMP",

 "L3ECMP", "NextHop", "EgressPort"]

 }

]

}

OpenFlow Table Type Patterns Version No. 1.0

Page 55 of 55 © 2014 Open Networking Foundation

Appendix D Credits

Contributors (in alphabetical order):

Abhijit Kumbhare, Albert Fishman, Alon Harel, Ben Mack-Crane, Ben Pfaff, Colin Dixon, Curt Beckmann,

Dacheng Zhang, Dave Hood, David Meyer, Haoyu Song, Jean Tourrilhes, Joel Halpern, Johann Tonsing,

John E (Ed) Rathke, Joseph Tardo, Ken Yi, Linda Dunbar, Rakesh Saha, Robert Raszuk, Shaun Crampton,

Srini Addepalli, Srinivas Veereshwara, Tsahi Daniel, Vytautas Valancius, Wesley M Felter, Xuewei Wang,

Yatish Kumar, Zoltán Lajos Kis

	1 Introduction
	2 Table Type Patterns
	2.1 Future-proofing the TTP Framework
	2.2 The Basic Lifecycle of TTPs in an OpenFlow Network
	2.2.1 Step 1: Something Prompts a New TTP
	2.2.2 Step 2: Describing a TTP
	2.2.3 Step 3: Sharing a TTP Description
	2.2.4 Step 4: Adding support for a TTP: The compilation phase
	2.2.5 Step 5: Going to Market with a TTP
	2.2.6 Step 6: Picking a TTP at Connection Time
	2.2.7 Step 7: Run-time Messaging with TTPs
	2.2.8 Step 8: TTP-based Testing and Certification

	3 Creating a Table Type Pattern
	3.1 TTP Metadata
	3.2 Identifiers
	3.3 Required Protocol Features
	3.4 Table Map
	3.5 Meter Table
	3.6 Flow Tables
	3.6.1 flow_mod Types
	3.6.2 Built-in flow_mods
	3.6.3 Table Subsets

	3.7 Group Table Entries
	3.8 PACKET_OUT support
	3.9 TTP Parameters
	3.10 Flow Paths
	3.11 Security

	Appendix A Benefits of TTPs and the TTP Lifecycle
	A.1 Improving and Clarifying Interoperability
	A.1.1 An Interoperability Thought Experiment
	A.2 Simplifying implementation of multi-table OpenFlow
	A.3 Improving switch resource utilization
	A.4 Reducing the "Chicken-and-Egg" OpenFlow adoption challenge
	A.5 In Summary

	Appendix B TTP Implementation Considerations
	B.1 Introduction
	B.2 Support for TABLE_FEATURES message
	B.3 Support for FLOW_MOD messages
	B.4 Support for GROUP_MOD messages
	B.5 Potentially useful OF-Switch extensions for TTPs

	Appendix C Example TTP Description: L2-L3-ACLs
	Appendix D Credits

{
 "NDM_metadata": {
 "authority": "org.opennetworking.fawg",
 "type": "TTPv1",
 "name": "L2-L3-ACLs",
 "version": "1.0.0",
 "OF_protocol_version": "1.3.3",
 "doc": ["Example of a TTP supporting L2 (unicast, multicast, flooding), L3 (unicast only),",
 "and an ACL table."]
 },

 "security": {
 "doc": ["This TTP is not published for use by ONF. It is an example and for",
 "illustrative purposes only.",
 "If this TTP were published for use it would include",
 "guidance as to any security considerations in this doc member."]
 },

 "table_map": {
 "ControlFrame": 0,
 "IngressVLAN": 10,
 "MacLearning": 20,
 "ACL": 30,
 "L2": 40,
 "ProtoFilter": 50,
 "IPv4": 60,
 "IPv6": 80
 },

 "identifiers": [
 {"var": "<port_vid>",
 "doc": "A VLAN ID to be assigned to untagged or priority tagged frames received on a port."},
 {"var": "<local_vid>",
 "range": "1..4094",
 "doc": "A VLAN ID valid on the wire at a port."},
 {"var": "<relay_vid>",
 "doc": "A VLAN ID valid internal to the switch."},
 {"var": "<VID>",
 "doc": "A VLAN ID"},
 {"var": "<Router_MAC_DA>",
 "doc": "A unicast MAC address used to reach the L3 flow tables"},
 {"var": "<Group_MAC>",
 "doc": "A group (multicast) MAC address."},
 {"var": "<Router_IP>",
 "doc": ["An IP address used to reach L3 control functions,",
 "e.g. a loopback address in the Router."]}, {"var": "<LocalSubnet>",
 "doc": "An IP subnet (address prefix) allocated to a directly attached L2 network or link."},
 {"var": "<port_no>",
 "doc": "A valid port number on the logical switch."},
 {"var": "<local_MAC>",
 "doc": "The unicast MAC address of a Router port on which a new L2 frame is transmitted."},
 {"var": "<dest_MAC>",
 "doc": "The destination MAC address for a new L2 frame."},
 {"var": "<subnet_VID>",
 "doc": "The VLAN ID of a locally attached L2 subnet on a Router."},
 {"var": "<<group_entry_types:name>>",
 "doc": ["An OpenFlow group identifier (integer) identifying a group table entry",
 "of the type indicated by the variable name"]}
],

 "features": [
 {"feature": "ext187",
 "doc": "Flow entry notification Extension – notification of changes in flow entries"},
 {"feature": "ext235",
 "doc": "Group notifications Extension – notification of changes in group or meter entries"}
],

 "meter_table": {
 "meter_types": [
 {"name": "ControllerMeterType",
 "bands": [{"type": "DROP", "rate": "1000..10000", "burst": "50..200"}]
 },
 {"name": "TrafficMeter",
 "bands": [{"type": "DSCP_REMARK", "rate": "10000..500000", "burst": "50..500"},
 {"type": "DROP", "rate": "10000..500000", "burst": "50..500"}]
 }
],
 "built_in_meters": [
 {"name": "ControllerMeter", "meter_id": 1,
 "type": "ControllerMeterType", "bands": [{"rate": 2000, "burst": 75}]},
 {"name": "AllArpMeter", "meter_id": 2,
 "type": "ControllerMeterType", "bands": [{"rate": 1000, "burst": 50}]}
]
 },

 "flow_tables": [
 {
 "name": "ControlFrame",
 "doc": ["Filters L2 control reserved destination addresses and",
 "may forward control packets to the controller.",
 "Directs all other packets to the Ingress VLAN table."],
 "flow_mod_types": [
 {
 "name": "Frame-To-Controller",
 "doc": ["This match/action pair allows for flow_mods that match on either",
 "ETH_TYPE or ETH_DST (or both) and send the packet to the",
 "controller, subject to metering."],
 "match_set": [
 {"field": "ETH_TYPE", "match_type": "all_or_exact"},
 {"field": "ETH_DST", "match_type": "exact"}
],
 "instruction_set": {"exactly_one": [
 [
 {"instruction": "METER", "meter_name": "ControllerMeter",
 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",
 "sent to the controller"]},
 {"instruction": "APPLY_ACTIONS",
 "actions": [{"action": "OUTPUT", "port": "CONTROLLER"}]
 }],
 [
 {"instruction": "APPLY_ACTIONS",
 "actions": [{"action": "OUTPUT", "port": "CONTROLLER"}]
 }]
]}
 }
],
 "built_in_flow_mods": [
 {
 "name": "Control-Frame-Filter",
 "doc": "Mandatory filtering of control frames with C-VLAN Bridge reserved DA.",
 "priority": 1,
 "match_set": [{"field":"ETH_DST","mask":"0xfffffffffff0","value":"0x0180C2000000"}],
 "instruction_set": []
 },
 {
 "name": "Non-Control-Frame",
 "doc": "Mandatory miss flow_mod, sends packets to IngressVLAN table.",
 "priority": 0,
 "match_set": [],
 "instruction_set": [{"instruction": "GOTO_TABLE", "table": "IngressVLAN"}]
 }
]
 },
 {
 "name": "IngressVLAN",
 "doc": ["Ingress VID processing table, including:",
 " - accepting or blocking untagged and priority tagged frames",
 " - accepting or blocking VLAN tagged frames",
 " - ingress VID filtering control",
 " - (optional) ingress VID translation"],
 "flow_mod_types": [
 {"all": [
 {
 "name": "Block-Untagged",
 "priority": "2..3",
 "doc": "Block untagged traffic on a port or all ports.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "all_or_exact"},
 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_NONE"}
],
 "instruction_set": [
 {"instruction": "CLEAR_ACTIONS"}
]
 },
 {
 "name": "Allow-Untagged",
 "priority": 3,
 "doc": "Allow untagged traffic.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "exact"},
 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_NONE"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "PUSH_VLAN"},
 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<port_vid>"}]},
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 },
 {
 "name": "Block-Priority-Tagged",
 "priority": "5..7",
 "doc": "Block priority tagged traffic on a port or all ports.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "all_or_exact"},
 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}
],
 "instruction_set": [
 {"instruction": "CLEAR_ACTIONS"}
]
 },
 {
 "name": "Allow-Priority-Tagged",
 "priority": "6..7",
 "doc": "Allow priority tagged traffic on a port or all ports.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "all_or_exact"},
 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<port_vid>"}]},
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 }

],
 "zero_or_more": [
 {
 "name": "Enable-Ingress-VID-Filter",
 "priority": "2..3",
 "doc": "Used to enable ingress VID filtering on all ports or a specific port.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "all_or_exact"},
 {"field": "VLAN_VID", "mask": "0x1000", "value": "OFPVID_PRESENT"}
],
 "instruction_set": [
 {"instruction": "CLEAR_ACTIONS"}
]
 },
 {
 "name": "Disable-Ingress-VID-Filter",
 "priority": 3,
 "doc": "Used to disable ingress VID filtering on a specific port.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "exact"},
 {"field": "VLAN_VID", "mask": "0x1000", "value": "OFPVID_PRESENT"}
],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 },
 {
 "name": "Ingress-VID-Allow",
 "priority": 4,
 "doc": "Used to allow a specific VID to ingress at a port or all ports.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "all_or_exact"},
 {"field": "VLAN_VID", "const_mask": "0xf000", "const_value": "0x1000",
 "mask": "0x0fff", "value": "<local_vid>"}
],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 },
 {
 "opt_tag": "VID-X",
 "name": "Ingress-VID-Translate",
 "priority": "4..5",
 "doc": "Used to translate specific VIDs at ingress at a port or all ports.",
 "match_set": [
 {"field": "IN_PORT", "match_type": "all_or_exact"},
 {"field": "VLAN_VID", "const_mask": "0xf000", "const_value": "0x1000",
 "mask": "0x0fff", "value": "<local_vid>"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "SET_FIELD", "field": "VLAN_VID", "value": "<relay_vid>"}]},
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 }
]}
],
 "built_in_flow_mods": [
 {
 "name": "Default-Allow-Untagged",
 "priority": 1,
 "doc": "Default to allow untagged traffic on all ports, default port VID is 1.",
 "match_set": [
 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_NONE"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "PUSH_VLAN"},
 {"action": "SET_FIELD", "field": "VLAN_VID", "value": 1}]},
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 },
 {
 "name": "Default-Allow-Priority-Tagged",
 "priority": 4,
 "doc": ["Default flow_mod to allow priority tagged traffic on all ports,",
 "default port VID is 1."],
 "match_set": [
 {"field": "VLAN_VID", "mask": "0x1fff", "value": "OFPVID_PRESENT"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "SET_FIELD", "field": "VLAN_VID", "value": 1}]},
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 },
 {
 "name": "Default-Disable-Ingress-VID-Filter",
 "priority": 1,
 "doc": "Default to disable ingress VID filtering on all ports.",
 "match_set": [
 {"field": "VLAN_VID", "mask": "0x1000", "value": "OFPVID_PRESENT"}
],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "MacLearning"}
]
 }
],	
 "table_subsets": [
 {"name": "IV-pass",
 "subset": ["Allow-Untagged", "Allow-Priority-Tagged", "Disable-Ingress-VID-Filter",
 "Ingress-VID-Allow", "Ingress-VID-Filter", "Ingress-VID-Translate",
 "Default-Allow-Untagged", "Default-Allow-Priority-Tagged",
 "Default-Disable-Ingress-VID-Filter"]
 },
 {"name": "IV-drop",
 "subset": ["Block-Untagged", "Block-Priority-Tagged", "Enable-Ingress-VID-Filter",
 "MISS"]
 }
]
 },
 {
 "name": "MacLearning",
 "doc": ["By default sends packets whose Source MAC address is ",
 "received on a new IN_PORT to controller for learning.",
 "The controller is expected to install flow_mods for learned",
 "addresses, and remove stale entries when required.",
 "The controller may also disable MAC learning for a VLAN ",
 "by installing a flow_mod to simply go to the next table."],
 "flow_mod_types": [
 {
 "name": "Known-MAC",
 "priority": 2,
 "doc": "Type used to create an entry for a learned MAC",
 "match_set": [
 {"field": "IN_PORT"},
 {"field": "VLAN_VID"},
 {"field": "ETH_SRC"}
],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "ACL"}
]
 },
 {
 "name": "Disable-MAC-Learning",
 "priority": 2,
 "doc": "Type used to disable MAC learning on a VLAN",
 "match_set": [{"field": "VLAN_VID"}],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "ACL"}
]
 },
 {
 "name": "MAC-Miss-limit",
 "doc": "Send unknown MACs to the controller, subject to metering.",
 "priority": 1,
 "match_set": [],
 "instruction_set": [
 {"instruction": "METER", "meter_name": "ControllerMeter",
 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",
 "sent to the controller"]},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}
]
 },
 {"instruction": "GOTO_TABLE", "table": "ACL"}
]
 }
],
 "built_in_flow_mods": [
 {
 "name": "MAC-Miss",
 "doc": "Send unknown MACs to the controller.",
 "priority": 0,
 "match_set": [],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}
]
 },
 {"instruction": "GOTO_TABLE", "table": "ACL"}
]
 }
]
 },
 {
 "name": "ACL",
 "doc": "Simple 5-tuple firewalling ACL table.",
 "flow_mod_types": [
 {
 "name": "IP5-Tuple-Block",
 "doc": ["This type allows matching on an IP 5-tuple and",
 "dropping packets."],
 "match_set": [{
 "exactly_one": [
 [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "IP_PROTO", "value": 6},
 {"field": "IPV4_SRC", "match_type": "mask"},
 {"field": "IPV4_DST", "match_type": "mask"},
 {"field": "TCP_SRC", "match_type": "mask"},
 {"field": "TCP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "IP_PROTO", "value": 17},
 {"field": "IPV4_SRC", "match_type": "mask"},
 {"field": "IPV4_DST", "match_type": "mask"},
 {"field": "UDP_SRC", "match_type": "mask"},
 {"field": "UDP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "IP_PROTO", "value": 6},
 {"field": "IPV6_SRC", "match_type": "mask"},
 {"field": "IPV6_DST", "match_type": "mask"},
 {"field": "TCP_SRC", "match_type": "mask"},
 {"field": "TCP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "IP_PROTO", "value": 17},
 {"field": "IPV6_SRC", "match_type": "mask"},
 {"field": "IPV6_DST", "match_type": "mask"},
 {"field": "UDP_SRC", "match_type": "mask"},
 {"field": "UDP_DST", "match_type": "mask"}
]
]
 }],
 "instruction_set": [
 {"instruction": "CLEAR_ACTIONS"}
]
 },
 {
 "name": "IP-5Tuple-Intercept",
 "doc": ["This type allows matching on an IP 5-tuple and",
 "forwarding to the controller."],
 "match_set": [{
 "exactly_one": [
 [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "IP_PROTO", "value": 6},
 {"field": "IPV4_SRC", "match_type": "mask"},
 {"field": "IPV4_DST", "match_type": "mask"},
 {"field": "TCP_SRC", "match_type": "mask"},
 {"field": "TCP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "IP_PROTO", "value": 17},
 {"field": "IPV4_SRC", "match_type": "mask"},
 {"field": "IPV4_DST", "match_type": "mask"},
 {"field": "UDP_SRC", "match_type": "mask"},
 {"field": "UDP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "IP_PROTO", "value": 6},
 {"field": "IPV6_SRC", "match_type": "mask"},
 {"field": "IPV6_DST", "match_type": "mask"},
 {"field": "TCP_SRC", "match_type": "mask"},
 {"field": "TCP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "IP_PROTO", "value": 17},
 {"field": "IPV6_SRC", "match_type": "mask"},
 {"field": "IPV6_DST", "match_type": "mask"},
 {"field": "UDP_SRC", "match_type": "mask"},
 {"field": "UDP_DST", "match_type": "mask"}
]
]
 }],
 "instruction_set": [
 {"instruction": "METER", "meter_name": "ControllerMeter",
 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",
 "sent to the controller"]},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}]
 }
]
 },
 {
 "name": "IP-5Tuple-Allow",
 "doc": ["This type allows matching on an IP 5-tuple and",
 "sending on to the L2 table, overriding a lower",
 "priority block or intercept."],
 "match_set": [{
 "exactly_one": [
 [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "IP_PROTO", "value": 6},
 {"field": "IPV4_SRC", "match_type": "mask"},
 {"field": "IPV4_DST", "match_type": "mask"},
 {"field": "TCP_SRC", "match_type": "mask"},
 {"field": "TCP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "IP_PROTO", "value": 17},
 {"field": "IPV4_SRC", "match_type": "mask"},
 {"field": "IPV4_DST", "match_type": "mask"},
 {"field": "UDP_SRC", "match_type": "mask"},
 {"field": "UDP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "IP_PROTO", "value": 6},
 {"field": "IPV6_SRC", "match_type": "mask"},
 {"field": "IPV6_DST", "match_type": "mask"},
 {"field": "TCP_SRC", "match_type": "mask"},
 {"field": "TCP_DST", "match_type": "mask"}
],
 [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "IP_PROTO", "value": 17},
 {"field": "IPV6_SRC", "match_type": "mask"},
 {"field": "IPV6_DST", "match_type": "mask"},
 {"field": "UDP_SRC", "match_type": "mask"},
 {"field": "UDP_DST", "match_type": "mask"}
]
]
 }],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "L2"}
]
 }
],
 "built_in_flow_mods": [
 {
 "name": "ACL-skip",
 "doc": "Mandatory miss flow mod, sends packets to L2 table.",
 "priority": 0,
 "match_set": [],
 "instruction_set": [{"instruction": "GOTO_TABLE", "table": "L2"}]
 }
]
 },
 {
 "name": "L2",
 "doc": ["MAC forwarding table"],
 "flow_mod_types": [
 {
 "name": "VID-flood",
 "priority": 1,
 "doc": "Flood frames with unknown DA.",
 "match_set": [
 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",
 "mask": "0x0fff", "value": "<VID>"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<VIDflood>"}
]
 },
 {"zero_or_one": {"instruction": "GOTO_TABLE", "table": "ProtoFilter",
 "doc": "Include this instruction of the VID is registered on the Router port."}}
]
 },
 {
 "name": "L2-Unicast",
 "priority": 2,
 "doc": "Unicast forwarding entry.",
 "match_set": [
 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",
 "mask": "0x0fff", "value": "<VID>"},
 {"field": "ETH_DST"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<EgressPort>"}
]
 }
]
 },
 {
 "name": "L2-Router-MAC",
 "priority": 2,
 "doc": "Router MAC address, so send toward IP flow tables.",
 "match_set": [
 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",
 "mask": "0x0fff", "value": "<VID>"},
 {"field": "ETH_DST", "value": "<Router_MAC_DA>"}
],
 "instruction_set": [
 {"instruction": "GOTO_TABLE", "table": "ProtoFilter"}
]
 },
 {
 "name": "L2-Multicast",
 "priority": 2,
 "doc": "L2 Multicast forwarding entry.",
 "match_set": [
 {"field": "VLAN_VID", "const_mask": "0x1000", "const_value": "0x1000",
 "mask": "0x0fff", "value": "<VID>"},
 {"field": "ETH_DST", "value": "<Group_MAC>"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<L2Mcast>"}
]
 }
]
 }
],
 "built_in_flow_mods": [
 {
 "name": "L2-Drop",
 "priority": 0,
 "doc": ["Discard frames with no VID registration,",
 "i.e., VID without a <VIDflood> group and",
 "corresponding VIDflood flow table entry."],
 "match_set": [],
 "instruction_set": [
 {"instruction": "CLEAR_ACTIONS"}
]
 }
],
 "table_subsets": [
 {"name": "L2-Forward",
 "subsets": ["VIDflood", "L2Unicast", "L2Multicast"]
 }
]
 },
 {
 "name": "ProtoFilter",
 "doc": ["Selects IP version flow table and forwards ARPs to controller."],
 "built_in_flow_mods": [
 {
 "name": "IPv4",
 "priority": 1,
 "doc": "Direct IPv4 packets to IPv4 flow table.",
 "match_set": [
 {"field": "ETH_TYPE", "value": 2048},
 {"field": "ETH_DST", "value": "<Router_MAC_DA>"}
],
 "instruction_set": [
 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},
 {"instruction": "GOTO_TABLE", "table": "IPv4"}
]
 },
 {
 "opt_tag": "IPv6",
 "name": "IPv6",
 "priority": 1,
 "doc": "Direct IPv6 packets to IPv6 flow table.",
 "match_set": [
 {"field": "ETH_TYPE", "value": 34525},
 {"field": "ETH_DST", "value": "<Router_MAC_DA>"}
],
 "instruction_set": [
 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},
 {"instruction": "GOTO_TABLE", "table": "IPv6"}
]
 },
 {
 "name": "Router-ARP",
 "priority": 2,
 "doc": "Direct targeted ARP packets to controller.",
 "match_set": [
 {"field": "ETH_TYPE", "value": 2054},
 {"field": "ARP_TPA", "value": "<Router_IP>"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}]
 }
]
 },
 {
 "name": "All-ARP",
 "priority": 1,
 "doc": "Direct ARP packets to controller.",
 "match_set": [
 {"field": "ETH_TYPE", "value": 2054}
],
 "instruction_set": [
 {"instruction": "METER", "meter_name": "AllArpMeter",
 "doc": ["This meter may be used to limit the rate of PACKET_IN frames",
 "sent to the controller. A separate controller meter is used",
 "here, with a lower rate than main controller meter, to limit ARPs",
 "before limiting other packets to the controller."]},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}]
 }
]
 }
]
 },
 {
 "name": "IPv4",
 "doc": ["IPv4 unicast forwarding table. To achieve LPM the flow_mod",
 "priority must be the length of the prefix mask."],
 "flow_mod_types": [
 {
 "name": "v4-Unicast",
 "doc": ["LPM forwarding entry. Valid only if the priority value",
 "matches the length of the prefix mask."],
 "match_set": [
 {"field": "IPV4_DST", "match_type": "prefix"}
],
 "instruction_set": [
 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<NextHop>"}]
 }
]
 },
 {
 "name": "v4-Unicast-ECMP",
 "doc": ["LPM forwarding entry with ECMP. Valid only if the priority value",
 "matches the length of the prefix mask."],
 "match_set": [
 {"field": "IPV4_DST", "match_type": "prefix"}
],
 "instruction_set": [
 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<L3ECMP>"}]
 }
]
 },
 {
 "name": "Local-ARP",
 "doc": ["Local subnet address needing ARP. Valid only if the priority value",
 "matches the length of the prefix mask."],
 "match_set": [
 {"field": "IPV4_DST", "value": "<LocalSubnet>", "match_type": "prefix"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}]
 }
]
 }
]
 },
 {
 "opt_tag": "IPv6",
 "name": "IPv6",
 "doc": ["IPv6 unicast forwarding table. To achieve LPM the flow_mod",
 "priority must be the length of the prefix mask."],
 "flow_mod_types": [
 {
 "name": "v6-Unicast",
 "doc": ["LPM forwarding entry. Valid only if the priority value",
 "matches the length of the prefix mask."],
 "match_set": [
 {"field": "IPV6_DST", "match_type": "prefix"}
],
 "instruction_set": [
 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<NextHop>"}]
 }
]
 },
 {
 "name": "v6-Unicast-ECMP",
 "doc": ["LPM forwarding entry with ECMP. Valid only if the priority value",
 "matches the length of the prefix mask."],
 "match_set": [
 {"field": "IPV6_DST", "match_type": "prefix"}
],
 "instruction_set": [
 {"zero_or_one": {"instruction": "METER", "type": "TrafficMeter"}},
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "GROUP", "group_id": "<L3ECMP>"}]
 }
]
 },
 {
 "name": "Local-ND",
 "doc": ["Local subnet address needing Neighbor Discovery. Valid only",
 "if the priority value matches the length of the prefix mask."],
 "match_set": [
 {"field": "IPV6_DST", "value": "<LocalSubnet>", "match_type": "prefix"}
],
 "instruction_set": [
 {"instruction": "APPLY_ACTIONS",
 "actions": [
 {"action": "OUTPUT", "port": "CONTROLLER"}]
 }]
 }
]
 }
],

 "group_entry_types": [
 {
 "name": "EgressPort",
 "doc": ["Output to a port, removing VLAN tag if needed.",
 "Entry per port, plus entry per untagged VID per port."],
 "group_type": "INDIRECT",
 "bucket_types": [
 {"name": "OutputTagged",
 "action_set": [{"action": "OUTPUT", "port": "<port_no>"}]
 },
 {"name": "OutputUntagged",
 "action_set": [{"action": "POP_VLAN"},
 {"action": "OUTPUT", "port": "<port_no>" }]
 },
 {"opt_tag": "VID-X",
 "name": "OutputVIDTranslate",
 "action_set": [{"action": "SET_FIELD", "field": "VLAN_VID", "value": "<local_vid>"},
 {"action": "OUTPUT", "port": "<port_no>" }]
 }
]
 },
 {
 "name": "VIDflood",
 "doc": ["Output to all ports registered for a VID (except IN_PORT).",
 "Entry per VID."],
 "group_type": "ALL",
 "bucket_types": [
 {"name": "VIDport",
 "action_set": [{"action": "GROUP", "group_id": "<EgressPort>"}]
 }
]
 },
 {
 "name": "L2Mcast",
 "doc": ["Output to all ports in a multicast tree (except IN_PORT).",
 "Entry per L2 group address."],
 "group_type": "ALL",
 "bucket_types": [
 {"name": "MCASTport",
 "action_set": [{"action": "GROUP", "group_id": "<EgressPort>"}]
 }
]
 },
 {
 "name": "NextHop",
 "doc": ["Decrement IP TTL and add L2 header for next hop.",
 "Entry per next hop IP address."],
 "group_type": "INDIRECT",
 "bucket_types": [
 {"name": "KnownMAC",
 "action_set": [
 {"action": "DEC_NW_TTL"},
 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},
 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},
 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},
 {"action": "GROUP", "group_id": "<EgressPort>"}]
 },
 {"name": "UnknownMAC",
 "action_set": [
 {"action": "DEC_NW_TTL"},
 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},
 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},
 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},
 {"action": "GROUP", "group_id": "<Flood>"}]
 }
]
 },
 {
 "name": "L3ECMP",
 "doc": ["Output to one port in an ECMP set.",
 "Entry per destination border node."],
 "group_type": "SELECT",
 "bucket_types": [
 {"name": "nextHopOption",
 "action_set": [{"action": "GROUP", "group_id": "<NextHop>"}]
 }
]
 },
 {"zero_or_more": {
 "name": "NextHopFF",
 "doc": ["Decrement IP TTL and add L2 header for next hop.",
 "Entry per next hop IP address.",
 "Fast Failover allows multiple buckets, picks first operational."],
 "group_type": "FF",
 "bucket_types": [
 {"name": "KnownMAC",
 "action_set": [
 {"action": "DEC_NW_TTL"},
 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},
 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},
 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},
 {"action": "GROUP", "group_id": "<EgressPort>"}]
 },
 {"name": "UnknownMAC",
 "action_set": [
 {"action": "DEC_NW_TTL"},
 {"action": "SET_FIELD", "type": "ETH_SRC", "value": "<local_MAC>"},
 {"action": "SET_FIELD", "type": "ETH_DST", "value": "<dest_MAC>"},
 {"action": "SET_FIELD", "type": "VLAN_VID", "value": "<subnet_VID>"},
 {"action": "GROUP", "group_id": "<Flood>"}]
 }
]
 }}
],
 "parameters": [
 {"name": "ACL::TableSize", "type": "integer"},
 {"name": "L2::TableSize", "type": "integer"},
 {"name": "IPv4::TableSize", "type": "integer"},
 {"name": "IPv6::TableSize", "type": "integer"},
 {"name": "Meter::TableSize", "type": "integer",
 "doc": "Number of meters that can be configured in the switch."},
 {"name": "Meter::Accuracy", "type": "integer",
 "doc": "Accuracy of meters on the switch."},
 {"name": "OptFunc", "type": "array of opt_tag values",
 "doc": "Support for optional functions can be negotiated using the OptFunc parameter."}
],
 "flow_paths": [
 {"doc": ["This object contains just a few examples of flow paths, it is not",
 "a comprehensive list of the flow paths required for this TTP. It is",
 "intended that the flow paths array could include either a list of",
 "required flow paths or a list of specific flow paths that are not",
 "required (whichever is more concise or more useful."],
 "name": "L2-2",
 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Unicast",
 "EgressPort"]
 },
 {"name": "L2-3",
 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Multicast",
 "L2Mcast", ["EgressPort"]]
 },
 {"name": "L2-4",
 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACL-skip","VID-flood",
 "VIDflood", ["EgressPort"]]
 },
 {"name": "L2-5",
 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Drop"]
 },
 {"name": "v4-1",
 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Router-MAC",
 "IPv4","v4-Unicast",
 "NextHop", "EgressPort"]
 },
 {"name": "v4-2",
 "path": ["Non-Control-Frame","IV-pass","Known-MAC","ACLskip","L2-Router-MAC",
 "IPv4","v4-Unicast-ECMP",
 "L3ECMP", "NextHop", "EgressPort"]
 }
]
}

